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ANNUAL REPORT

GRANT#: N00014-05-1-0009

PRINCIPAL INVESTIGATORS: Diola Bagayoko, Ph.D., Southern University System
Distinguished Professor of Physics, Project Director, and G. L. Zhao, Ph.D., Associate Professor
of Physics, SUBR, Co-Principal Investigator

Program Officer, Office of Naval Research (ONR): Colin E. Wood, Ph.D.,
Ballston Centre tower One, 800 North Quincy Street, Arlington, VA 22217-5660

INSTITUTION: Southern University and A & M College in Baton Rouge (SUBR)

GRANT TITLE: Predictive Computations of Properties of Wide-Gap and Nano-
Semiconductors

AWARD PERIOD: October 1, 2004 to September 30, 2005

OBJECTIVE: As per the initial proposal, the aim of this project is (a) to produce new scientific
knowledge on wide-gap and nano-semiconductors, with specific materials including GaN, InN,
AIN, and carbon nanotubes, (b) to develop analytical and computational techniques and
computer codes for wider applications in descriptive and predictive investigations of the above
materials and others, and (c) to provide research training for undergraduate and graduate
students, including minority students at SUBR.

APPROACH: Our technical approach or method, as per the proposal, consists of the following.
Like most previous calculations of electronic and related properties of semiconductors, we
employ a density functional theory (DFT) potential. This potential is often selected, by design,
from the local density approximation (LDA) to the general DFT. We also utilize, like previous
works, the linear combination of atomic orbital (LCAO) formalism in a Rayleigh-Ritz variational
procedure to perform self-consistent calculations. Our calculations, to date, are for zero
temperature and are non-relativistic.

The key distinction between our method and those of all previous calculations by other
groups resides in our adherence to the Bagayoko, Zhao, and Williams (BZW) method in the
implementation of the LCAO formalism. References clearly identified in the attached articles
fully describe this method. Essentially, this method resolved the long-standing underestimation,
by theory, of measured energy or band gaps of finite (atoms, clusters, molecules) and infinite
(semiconductors insulators) systems. As explained in the attached articles and references therein,
BZW first identified a basis set and variational effect that is responsible for an unphysical
lowering of the low-lying, unoccupied energy levels or bands of materials. This unphysical
lowering is shown to be a mathematical artifact stemming from the Rayleigh theorem. BZW
subsequently introduced a rigorous method of performing variational calculations in such a way
that the above unphysical lowering of unoccupied levels or bands is totally avoided. Let us
underscore that the underestimation of energy and band gaps is a trivial consequence of the
above unphysical lowering of unoccupied levels of bands.
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The BZW method generally entails the performance of three (3) or more self-consistent
calculations. The first calculation employs the minimal basis set for the system and progressively
augment it in subsequent calculations. The occupied energy levels or bands of a calculation the
next, consecutive calculation whose basis set is larger. As explained in detail in the articles,
successive calculations have different basis sets: the basis set for the latter is obtained by
augmenting that of the former with the next excited state orbital an atomic or ionic species that is
present in the system under study (i.e., In and N for InN). This process continues until the
occupied energies are found to be identical for two consecutive calculation N and (N+1). Then,
the results of calculation N are the physical ones for the system under study (and not those of
calculation N+1). This criterion for stopping the process rests trivially on the facts that (a)
density functional theory is a ground state theory and (b) only the wave functions of the occupied
states are including in the construction and reconstruction of the charge density (and hence the
potential and the Hamiltonian) in the self-consistency process.

Once the correct energy levels or bands are obtained, then we proceed to calculate a host
of properties that include the energy or band gaps, optical transition energies, the total energy,
the total and partial densities of states, the effective masses of charge carriers (for application in
transport studies), and the optical properties (i.e., the complex dielectric functions). Of course,
the total energy curves are utilized to compute the bulk modulus.

In addition to the above technical approach, we should note that our programmatic
implementation also adhered to the proposal. In particular, we have hired Dr. Hua Jin as the
Postdoctoral Associate. She has been performing excellently, not only in carrying out research
tasks, but also in assisting the investigators in their training of students on the complex software
package utilized in this work. A graduate and undergraduate students, mostly African American,
have also been employed. SUBR is a Historically Black College and University (HBCU). The
effort levels of the investigators (D. Bagayoko and G. L. Zhao) are as per the proposal.

ACCOMPLISHMENTS: As summarized in the abstract of this report, we have published six
(6) articles, made seven (7) technical presentations, two of which were at an international
conference. A seventh article is pending. To reduce redundancy, we refer the reader to the
following full listing of the articles, with referencing information. We also list the presentations
below. The subtitles below, for accomplishments, are keyed to the objectives enunciated above.

Publications

"Structural, Elastic, and Electronic Properties of Deformed Carbon Nanotubes under Uniaxial
Strain. " A. Pullen, G. L. Zhao, D. Bagayoko, and L. Yang. Physical Review B 71, 205410.

"Ab-initio Simulations of the Growth and Structural Properties of Short Carbon Nanobells. " G.
L. Zhao, D. Bagayoko, and E. G. Wang. Accepted for publication in the Proceedings of the 2005
China Conference on Nanoscience and Technology, Beijing, China, July 2005.

"A Universal Relation Between the Densities of States Near van Hove Singularities and the
Effective Electron Masses in 1-Dimensional Semiconductors." G. L. Zhao and D. Bagayoko.
Accepted for publication in the Proceedings of the 2005 China Conference on Nano-Science and
Technology, Beijing, China, July 2005.
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"LDA and LCAO-BZW Description of Electronic Properties of Wurtzite Zinc Oxide (w-ZnO)."
Diola Bagayoko, Lashounda Franklin, and G. L. Zhao, accepted for publications in Proceedings
of the 2005 National Conference of the National Society of Black Physicists (www.nsbp.org),
Orlando, Florida.

"Predictions of Electronic, Structural, and Elastic Properties of Cubic InN." Diola Bagayoko,
Lashounda Franklin, and G. L. Zhao, Journal of Applied Physics 96, 4297-4301, 2004.

"Density Functional Band Gap of Wurtzite InN." Diola Bagayoko and Lashounda Franklin,
Journal of Applied Physics, 97, 123708, 2005.

"Re-examination of the Ab-initio Calculation of the Electronic Structures of ZnSe, Ge, and
GaAs." G. L. Zhao, L. Franklin, and D. Bagayoko. Submitted to Physical Review B, 2005.

Presentations

June 9-11, 2005, Beijing, China. China International Conference on Nanoscience and
Technology. "Ab-initio Simulations of the Growth and Structural Properties of Short Carbon
Nanobells. " G. L. Zhao, D. Bagayoko, and E. G. Wang.

June 9-11, 2005, Beijing, China. China International Conference on Nanoscience and
Technology. "A Universal Relation Between the Densities of States Near van Hove Singularities
and the Effective Electron Masses in 1-Dimensional Semiconductors." G. L. Zhao and D.
Bagayoko.

March 25, 2005. Los Angeles, CA. March Meeting of the American Physical Society (APS).
"Structural, Elastic, and Electronic Properties of Deformed Carbon Nanotubes under Uniaxial
Strain. " A. Pullen SUBR & (Caltech), G. L. Zhao, D. Bagayoko, and L. Yang (NASA), Bull.
APS, Vol. 50, No. 1, Page 1420 (2005).

March 23, 2005. Los Angeles, CA. March Meeting of the American Physical Society (APS).
"Re-examination of Ab-initio Calculation of the Electronic Structure of Zn Se, Ge, and GaAs."
G. L. Zhao, L. Franklin, and D. Bagayoko, Bull. APS, Vol. 50, No. 1, Page 1073 (2005).

March 22, 2005. Los Angeles, CA. March Meeting of the American Physical Society (APS).
"True LDA Band Gaps of Wurtzite and Cubic Indium Nitride (w-InN and c-InN). " D. Bagayoko,
G. L. Zhao, and L. Franklin. Bull. APS, Vol. 50, No. 1, Page 617 (2005). Audience:
Approximately 70 physical science researchers and graduate students.

February 18, 2005. Orlando, Florida, Disneyland. 2005 National Conference of the National
Society of Black Physicists (NSBP) and of the National Society of Hispanic Physicists (NSHP).
"Local Density Functional Description of Electronic Properties of Wurtzite Zinc Oxide (ZnO). "
D. Bagayoko, G. L. Zhao, and L. Franklin. Audience: 17 faculty members, graduate students,
and federal lab researchers.
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February 17, 2005. Orlando, Florida, Disneyland. 2005 National Conference of the National
Society of Black Physicists (NSBP) and of the National Society of Hispanic Physicists (NSHP).
"A Competitive Edge for Recruitment: The Versatility and Wonders of Physics." D. Bagayoko.
Audience: 20 faculty members, graduate students, and federal lab researchers.

Code Development

Another major component of our accomplishments in this reporting period stems from the
development and refinement of the computer program package for wider utilization. We have
developed a precise and concise user-manual that we are currently field-testing for effectiveness.

Research Training of Students

We have trained four (4) minority undergraduate students in the performance of the sophisticated
calculations this project entails. These students are physics majors at SUBR. One of the students
is the first author on the Physical Review article on electronic, elastic, and related properties of
single walled carbon nanotubes.

CONCLUSIONS: We have implemented in a successful manner, as gauged by the publications
and technical presentations, this project focused on "predictive calculations of properties of
wide-gap and nano-semiconductors. Materials studied to date include GaN, ZnO, wurtzite InN,
cubic InN, and several carbon nanotubes. Our results, in contrast to previous DFT or LDA
calculations by other groups, are in excellent agreement with experiment. The significance of
these results is underscored below and in the abstract.

SIGNIFICANCE: Our articles on electronic, structural, optical, and other properties of
semiconductors and carbon nanotubes (Please see the attached list of publications) have
profound implications, even for the study of nuclei. These papers resolved a problem dating back
to the beginning of quantum. Indeed, we solved the woeful, theoretical underestimation of the
band gaps of semiconductors and insulators as compared to measured values. The resolution of
this problem has some serious implications for the design and fabrication of
semiconductor-based and nano-devices. A collateral benefit stems from the fact that the
method of solution also applies to the prediction of nuclear energy levels in the shell model,
opening the way to theoretical explorations of possibilities of a population inversion and the
actual construction of a "gamma ray amplification by stimulated emission of radiation (graser)"
device. We believe that no comments are needed on commercial and other applications of a
graser.

PATENT INFORMATION: Not Applicable

AWARD INFORMATION: Not Applicable

ATTACHMENTS: FULL TEXT OF PUBLICATIONS LISTED ABOVE
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D. Bagayoko, Ph.D., and G. L. Zhao, Ph.D.
Department of Physics

Southern University and A&M College

Full copies of the following articles are provided below, in the order in which they are listed
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Strain." A. Pullen, G. L. Zhao, D. Bagayoko, and L. Yang. Physical Review B 71, 205410.

"Ab-initio Simulations of the Growth and Structural Properties of Short Carbon Nanobells." G.
L. Zhao, D. Bagayoko, and E. G. Wang. Accepted for publication in the Proceedings of the 2005
China Conference on Nanoscience and Technology, Beijing, China, July 2005.

"A Universal Relation Between the Densities of States Near van Hove Singularities and the
Effective Electron Masses in 1-Dimensional Semiconductors." G. L. Zhao and D. Bagayoko.
Accepted for publication in the Proceedings of the 2005 China Conference on Nano-Science and
Technology, Beijing, China, July 2005.

"LDA and LCAO-BZW Description of Electronic Properties of Wurtzite Zinc Oxide (w-ZnO)."
Diola Bagayoko, Lashounda Franklin, and G. L. Zhao, accepted for publications in Proceedings
of the 2005 National Conference of the National Society of Black Physicists (www.nsbp.org),
Orlando, Florida.

"Predictions of Electronic, Structural, and Elastic Properties of Cubic InN." Diola Bagayoko,
Lashounda Franklin, and G. L. Zhao, Journal of Applied Physics 96, 4297-4301, 2004.

"Density Functional Band Gap of Wurtzite InN." Diola Bagayoko and Lashounda Franklin,
Journal of Applied Physics, 97, 123708, 2005.

"Re-examination of the Ab-initio Calculation of the Electronic Structures of ZnSe, Ge, and
GaAs." G. L. Zhao, L. Franklin, and D. Bagayoko. Submitted to Physical Review B, 2005.
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Structural, elastic, and electronic properties of deformed carbon nanotubes under uniaxial strain

A. Pullen,' G. L. Zhao,',* D. Bagayoko,' and L. Yang 2

'Department of Physics, Southern University and A & M College, Baton Rouge, Louisiana 70813, USA
2Eloret, NASA Ames Research Center, MS230-3, Moffett Field, California 94035, USA

(Received 7 May 2004; revised manuscript received 20 January 2005; published 25 May 2005)

We report structural, elastic, and electronic properties of selected, deformed, single-wall carbon nanotubes
under uniaxial strain. We utilized a generalized gradient approximation potential of density functional theory
and the linear combination of atomic orbital formalism. We discuss bond-lengths, tubule radii, and the band
gaps as functions of tension and compression strain for carbon nanotubes (10, 0), (8, 4), and (10, 10) which
have chiral angles of 0, 19.1, and 30 deg relative to the zigzag direction. We also calculated the Young's
modulus and the in-plane stiffness for each of these three nanotubes as representatives of zigzag, chiral, and
armchair nanotubes, respectively. We found that these carbon nanotubes have unique structural properties
consisting of a strong tendency to retain their tubule radii under large tension and compression strains.

DOI: 10.1103/PhysRevB.71.205410 PACS number(s): 73.22.-f, 61.46.+w

Single-wall carbon nanotubes (SWCNTs) can be viewed lected parameters partly suggests the present work that em-
as rolled-up graphene sheets that have a diameter at the order ploys an ab initio approach.
of 1 nm. They have properties such as high current density, Three main features characterize our first-principles corn-
high elasticity, and stiffness unparalleled by other materials. putational method. The first of these features is the choice of
Their potential applications range from that in building sky- the potential. We utilized the generalized gradient approxi-

scrapers and elevator cables to the ones in very tiny electrical mation (GGA) potential of Perdew and Wang.13 This density
circuits and machines.1 These materials, however, are too functional14-16 potential goes beyond the local density ap-

small for many conventional measurements. This situation proximation (LDA). We also performed LDA calculations
underscores the possible importance of theoretical studies, for carbon nanotube (10, 0). The second feature of our

including the one reported here that focuses on structural, method stems from employing the linear combination of
elastic, and electronic properties of selected single-wall car- atomic orbital (LCAO). The third and distinctive feature of

bon nanotubes under uniaxial strain, our work resides in our use of optimal basis sets as per the
In the last several years, tight-binding calculations have Bagayoko, Zhao, and Williams (BZW) procedure.17-20 As

been extensively used to study the structural and electronic explained elsewhere, this procedure avoids a basis set and
structure of carbon nanotubes. - 6 Tight-binding approxima- variational effect inherently associated with variational cal-
tions based on the symmetry of the honeycomb lattice of culations that employ a basis set and leads to the calculated
graphite predicted that SWCNTs could be semiconducting or band gaps in very good agreement with experiments.17-20

metallic depending on their chirality (n,m). The tight- With the above method, we solved the Kohn-Sham 4 ,15 equa-

binding model has been able to provide good estimates of the tion self-consistently. Self-consistency was followed by the

basic electronic structure of SWCNTs. However, curvature- calculations of the total energies. Details of these steps, in-

related effects and the hybridization of different electronic cluding the Kohn-Sham equation and the expression for the

states of graphite could lead to structural and electronic prop- total energy, are fully described in the literature. 14-20

erties that are substantially different from the result of tight- In the LCAO method, we expanded the electronic eigen-

binding calculations. Zigzag (n, 0) (where n is a multiple of function tki of the many-atom system as a linear combina-

3) SWCNTs which were predicted to be metallic from tight- tion of atomic wave functions.17 These input functions result

binding calculations were found to have small energy gaps.7  from ab initio calculations for atomic species that are present

Several theoretical groups have studied the elastic properties in the system. For the calculations, the C(ls) state was used

of carbon nanotubes. Their approaches include simulations as the core state. For the (10, 0) and the (8, 4) tubes, the

with realistic many-body potentials, 8 the empirical force- C(2s2p) states were used as filled and partially filled valence

constant method, 9 tight-binding formalisms, 6,10 pseudopoten- states. The C(3s3p) orbitals were the unfilled electron states
tial calculations with local density approximation that were used to augment the basis set for the calculations.
potentials,11 and Born's perturbation technique within a lat- For the (10, 10) tube, the C(2s2p) states were used as filled
tice dynamics model.12  and partially filled valence states and the C(3s) as the un-

The aim of this work is therefore to study the aforemen- filled state. The empty C(3p) state was dropped, in the case
tioned properties of SWCNTs, utilizing ab initio quantum of (10, 10), due to convergence difficulties.
computations. We specifically report on structural, elastic, Uniaxial strain was simulated by linearly scaling the atom
and electronic properties of SWCNTs under uniaxial strain, positions along the tube axis in the carbon nanotube. To find
Recent tight-binding calculations have led to values of bond how ihe tube radius changes with uniaxial strain, after the
lengths and radii, band gaps, and Fermi levels as functions of tube axis was scaled, the radius was identified from the total
strain.6 The dependence of tight-binding results upon the se- energy minimization procedure. Namely, for a given nano-

1098-0121/2005/71(20)/205410(5)/$23.00 205410-1 ©2005 The American Physical Society



PULLEN et al. PHYSICAL REVIEW B 71, 205410 (2005)

TABLE I. "Unstrained bond lengths (a0, b0, and co) in carbon
nanotubes (10,0), (8,4), and (10,10). L0 is the length of the unit cell; 1.08
ro is the tube radius; and N is the number of atoms per unit cell.

(10,0) (8,4) (10,10) 1.04

a0 (A) 1.416 1.414 1.420 a/b,

bo(k) 1.416 1.419 1.420 LD 1.00 -.----
co (A) 1.420 1.420 1.418 E

r0 (A) 3.915 4.143 6.781 • 0.96

L0 (A) 4.26 11.27 2.46
N 40 112 40

m 0.92 I AI
-8 -6 -4 -2 0 2 4 6 8

tube and a given compression or tensile strain, the total en- 6 (%)

ergy was obtained as a function of the tube radius. The equi- FIG. 1. Bond lengths and tube radius as functions of compres-
librium radius, i.e., the stable one, was the one corresponding sion and tension strain s for (10,0) nanotube. Each length is scaled
to the minimum of the total energy. This process was re- to its unstrained length.
peated for each strain to obtain the radius of a tubule as a
function of compression or tensile strain. Similarly, the cal- report. As per Figs. 1 and 2, the calculated and normalized
culated bond lengths, band gap, and Fermi energies, for a lengths (i.e., arao, b/bo, or c1co) of bonds with a component
given nanotube and a given strain, are the one corresponding along the axis decrease or increase linearly with compression
to the minimum of the total energies. or tensile strain, respectively. These variations are quantified

The Young's modulus for each SWCNT was calculated by with the slopes m provided in Table II.
fitting the total -energy/unit cell for each strain s,, to thefiationg tA special feature of the calculated properties of the carbon
equation nanotubes was that the radii of the nanotubes do not change

[ ] 2 under a substantially large uniaxial strain, from -6% to +6%.
E = 7rr2 zy Z (1) The Poisson's ratio, which is the ratio of the transverse con-

tracting strain to the longitudinal elongational strain, is

where Y is the Young's modulus, z is the unit cell length, and nearly zero for these carbon nanotubes. This behavior is
r is the outer radius of the nanotube. Equation (1) was de- drastically different from that of macroscopic materials and it
rived using the assumption that the nanotube was a perfect disagrees with results of tight-bonding calculations and other
cylinder.21 The standard radii tabulated for the nanotubes are mechanics simulations.6,23 One possible explanation is that
for circumferences through the centers of the outer atoms, the bonds along the circumference, partly strengthened by
The outer radius includes such a standard radius plus the curvature effects, are not significantly affected by uniaxial
radius of the carbon atom (0.71 A). We also calculated the strains orthogonal to them (i.e., along the axis). We also re-
in-plane stiffness C, which is an alternative measure of the peated the studies using ab initio LDA calculations for
mechanical characteristic of nanotubes that is defined as22  SWCNT (10, 0). The total energy minimization of the LDA

1 02E calculations for (10, 0) found the bond length at 1.402 A for
- ,(2)_ _ _ _ _ _ _ _ _ _

= S 2 , . , . , . , . , , . ,
Oezz

where S is the surface area of the nanotube. 8 1.08
0

Table I displays the unstrained bond lengths and other r.

characteristics of the tubules under study. In a graphene :31.04

sheet, the lengths of the a, b, and c bonds are equal. In -o

unstrained nanotubes, which are rolled graphene sheets, the -

three bonds are generally different. For the SWCNT (10, 0), "r 1.00 ..... S=e

the c bond along the axis is greater than the a and b bonds '-

along the circumference (a=b<c). For the SWCNT (10, E0
10), the c bond along the circumference is shorter than the a 0.96

and b bonds along the axis (a=b>c). In the case of the .S

SWCNT (8, 4), the a bond closest to the circumference is r
less than the c bond closest to the axis, i.e.,a<b<c. The o 0.92

-8 -6 -4 -2 0 2 4 6 8bond lengths and radii as functions of the compression or -- ,
tensile strain are displayed in Fig. 1 for the (10, 0) and Fig. 2
for the (8, 4). The calculated results for (10, 10) are very FIG. 2. Bond lengths and tube radius as functions of tension
similar to those of (10, 0) and (8, 4) and are not presented in strain and compression strain e for (8,4) nanotube. Each length is
a separate figure, due to the page limitation of this brief scaled to its unstrained length.

205410-2
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TABLE II. Coefficients m of linear variation of normalized bond 1.6
lengths with compression (negative) and tensile (positive) strain 1.4

(i.e., s expressed as -0.04 and +0.06 for 4% and 6% compression 1- 1.2

and tensile strain, respectively). A1/l 0 =ne, where 1 is the a, b, or > 1.0
c bond length. The Young's modulus Y is in TPa. The in-plane 0 0.8

stiffness C is in J/m 2. w• 0.6
0.4

m for bond m for bond m for bond Y C 0.2

Nanotubes a b c (T-a) (J/m 2) 0.0 .-2 0 2 4 6-8 -6-42024

(10,0) 0.252 0.252 1.000 1.47 340 (%)

(8,4) 0.036 0.572 0.893 1.10 267 FIG. 3. Band gaps of indicated carbon nanotubes as functions of
(10,10) 0.746 0.746 0a 0.726 272 compression and tensile strain.

aBond c, for (10,10), is along the circumference of the tube. easiest to stretch or to compress, as confirmed by our results

in Table II.
a0 and b0 and 1.406 A for co, that is about 1% smaller than We also calculated the in-plane stiffness C for the carbon
the results of the ab initio GGA calculations. The ab initio nanotubes. It is 340, 267, and 272 J/m 2 for (10, 0), (8, 4),
LDA calculations for SWCNT (10, 0) also found that the and (10, 10), respectively. The in-plane stiffness of these
radii of the nanotube did not change under a substantially nanotubes exhibited a dependence on their chirality, when
large uniaxial strain. Among the previous ab initio calcula- the nanotubes are strained along the tube axis (z-direction).
tions of the elastic properties of carbon nanotubes, Sanchez- Xiao and Liao reported an average in-plane stiffness C of
Portal et al. utilized a minimal basis set of one s and three p 328 J/m 2 for graphene, using the second-generation Brenner
orbitals per carbon atom and performed LDA calculations. 24  potential in their simulation of carbon nanotubes.22

In their calculations, they used pseudoatomic orbitals.24 Van The calculated electronic properties for the unstrained
Lier et al. utilized ab initio Hartree-Fock 6-31G method and nanotubes basically reproduced the results of Zhao et al.2°
closed nanotube models in their simulations.25 Sanchez- for (10, 0) and (8, 4), using the optimal basis sets of the
Portal et al.24 and Van Lier et al.25 reported relatively small BZW method, which gave converged results for the calcu-
values (from 0.14 to 0.19) of the Poisson ratio for their cal- lated electronic structure that included the occupied electron
culated carbon nanotubes, which also indicated the diameter states as well as the unoccupied ones near the Fermi level.
rigidity of the carbon nanotubes. These previous ab initio These tubes were found to be semiconductors. These authors
calculations utilized different computational methods, such provided plots of the band structures of these tubules. 20 The
as a minimal basis set and the Hartree-Fock method, and electron energy bands of carbon nanotube (10, 10) present a
their results are slightly different from ours. As demonstrated semimetallic property as reported in previous publications.
in one of our previous publications,30 the use of a minimal Figure 3 shows the nonlinear variation of band gaps of (10,
basis set may not be sufficient to obtain a highly accurate 0) and (8, 4) with strain. For both nanotubes, the band gap
solution of the calculated electronic structure of the carbon decreases with compression strain and increases with tensile
nanotubes, which could explain in part the difference be- strain, for strain values smaller than or equal to 4%. While
tween our results and those of Sanchez-Portal et al. The fun- the band gap for (8, 4) reaches a minimum for a compression
damental differences between the Hartree-Fock method and strain of 4%, that for (10, 0) exhibits a maximum for a ten-
density functional methods, i.e., the inclusion of the elec- sile strain of 4%. Our results for the variation of the band gap
tronic correlation effects in the latter, partly explain the dif- with strain qualitatively agree with the findings from tight
ference between our results and those of Van Lier et al. In binding21 but are quantitatively different,6 particularly in the
our ab initio calculations, we utilized extended atomic basis magnitudes of the band gaps. As apparent in Fig. 3, our
sets and performed both GGA and LDA computations. results indicate that nanotube (10, 0) become metallic at 6%

The calculated Young's moduli Y (in TPa) for the tubes compression strain. It was noticed that the carbon nanotubes
are shown in Table II. We recall that the radius included in may collapse for large strains, 32,33 a process that we cannot
the formula for the Young's modulus is from the center of the simulate at present using the ab initio quantum calculations,
tube to the outer circumference. This value of the radius led because the required computations are beyond our current
to Young's moduli close to the experimentally found value of computation capability. Therefore, the obtained band gaps
approximately 1 TPa.9 The (10, 0) and (10, 10) tubes have for large strains may be a theoretical simulation. A priori, the
the highest and lowest Young's moduli, respectively. This general behavior of these band gaps with strain, particularly
trend is expected due to the bond geometry of the tubes from values below 4%, is expected on the basis of the in-
according to chirality. All three bonds in the (10, 0) tube crease or decrease of the overlap between atomic sites, for
have a significant component parallel to the axis along which compression or tensile strains, respectively. The consequent
strain is applied. In the case of (10, 0), the c bond is entirely broadening or flattening of the bands, respectively, affects
along the axis. In contrast, one of the bonds of the (10, 10) the gaps.
tube is entirely along the circumnference; it is not expected to A discussion of our results for the elastic properties is
oppose any resistance neither to compression nor to tensile partly limited by the dearth of experimental data and by the
strain. For this reason, nanotube (10, 10) is intuitively the rather large uncertainty associated with currently available
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ones. Indeed, Treacy et al.26 and Wong and coworkers27 re- strain. The results of our ab initio, self-consistent, GGA-
ported average Young's moduli of 1.8 and 1.28 TPa with BZW calculations agreed qualitatively with some findings of
respective uncertainties of 1.4 and 0.59 TPa. Given these the tight binding approach and quantitatively disagreed with
large error margins, the claimed agreement between our re- them. We found that the radii of these nanotubes do not
suits and experimental ones may not have much significance. change under uniaxial strain, up to 6%. We quantified the
A comparison with previous theoretical studies is hampered linear variation of bond lengths with compression and tensile
by the differences in the expressions of the Young's modulus strain and showed the change of the band gap with strain, for
for carbon nanotubes as explained by Hemindez and semiconducting nanotubes, to be essentially nonlinear. Mea-
coworkers.10 These authors found 1.22 and 1.24 TPa for the surements of elastic limits for (n, 0) and (n,n) nanotubes and
Young's moduli of (10, 0) and (10, 10) respectively. The of the Young's moduli and the in-plane stiffness for graphite
tight-binding work of these authors, as per their Fig. 3, led to
about the same modulus for (n,0) and (n,n) single-walled qualitatively agree with the trends in our calculated results
carbon nanotubes for diameters between 0.75 and 2 nih. This for the selected single-walled carbon nanotubes.
finding is qualitatively different from ours. Lu9 also found, Recently, we received two preprints regarding the experi-
using the empirical force-constant model, values of 0.975 mental work by S. B. Cronin et al. at Harvard University andand 0.972 TPa for (10, 0) and (10, 10), respectively. Our the Massachusetts Institute of Technology on measurements
results are clearly different for the three nanotubes under of uniaxial strain in single-wall carbon nanotubes, utilizingresltsareclerlydiferet fr te treenantubs uder resonance Raman spectra of atomic-force microscope modi-
consideration. Our results of 1.47 and 0.726 TPa for nano- res Ramn s of aice microcoe modi-
tubes (10, 0) and (10, 10), respectively, qualitatively agree fle SW dns Thi en tailed bendingotanotubes
with the trend in the recent tight-binding work of Zhang et while hoding the s fixd. Two irtant commentsal.2 who found the elastic limit of (n, 0) tubes to be about should be made about this finding. The first one consists of

rad)ubes. Another it the fact that our calculations did not include a determination
twice that of (n,n) tubes of comparable radius.of whether or not the nanotubes actually conserve their sym-
dication of the possible correctness of our findings may re- metr or n de nano as actuas Con inret sym-
side in the case of graphite. Indeed, the Young's modulus of metrical geometry under strain as high as 6%. Cronin et al.32

graphite along the c axis, 0.0365 TPa, is very different from reported cases where carbon nanotubes broke under strains
the one in the basal plane, 1.02 TWa. 29  greater than 1.65%. The second comment stems from an in-

Due to our utilization of the BZW method, our calculated dication, from the work of Cronin et al.,32,33 that the radii of

band gaps are expectedly higher than other theoretical find- semiconducting SWCNTs do not change under strains be-
ings known to us. While Reich et al.30 reported a gap of tween 0.06 and 1.65%. The constancy of the radial breathing

0.8 eV for nanotube (8, 4), we found 0.96 eV. More impor- mode (RBM) frequency (WoRBM) lead to this conclusion,32 ,33

tantly, our results clearly show that the variation of the band given that the tube diameter dt=2 4 8Io)RBM.

gap with strain is far from being linear. For nanotubes (10, 0) ACKNOWLEDGMENTS
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Abstract: We performed ab-initio density functional simulations to study the structural and
growth properties of short carbon nanobells. We used a real space approach and the linear
combination of atomic orbitals (LCAO) formalism. In the nitrogen-doped carbon nanobells, the
nitrogen atoms that are attracted to the open-edge sites of the carbon nanobells play an important
role in the growth of the short carbon nanostructures. We present the calculated electronic
structure of the short nanobells. The calculated local density of states of the nanobells revealed
field emission characteristics that agree with experimental observations.

properties with a turn-on field of electron
I. Introduction emission as low as 0.8VIu.r. 9,13  We
The carbon nanostructures present interesting performed ab-initio density functional
properties with a great potential of calculations, aiming to understand the
applications. Particularly, short carbon growth, structural, and electronic properties
nanotubes or carbon nanobells present of short carbon nanobells.
excellent field-emission properties that have
attracted a great interest for applications.l 8  II. Method
Experiments demonstrated that the nitrogen- Although the experimental synthesis of
assisted synthesis can grow carbon nanofibers carbon nanobells produced samples of
on a large scale. 9 "12 Such carbon nanofibers various sizes, measurements revealed that the
exhibit a "bamboo-like" structure. atomic structure of the bamboo-like
Distinctively, a great part of the bamboo-like morphology in thick nanobells is similar to
nanofibers consists of short carbon nanobells. that of the thinner ones.9 Experiments also
Individual nanobells are self-contained and revealed that adjacent nanobells do not have a
stack one on top of the other to create a long firm contact, but instead the closed end of one
nanofiber. The carbon nanobells may be nanobell is weakly inserted into the open end
viewed as short nanotubes such that their of another. Single nanobells can be easily
lengths are of the same order as their separated from other part of the nanofiber. 10

diameters. The electronic structure of the Hence, our ab-initio calculations will focus
short carbon nanobells is substantially on single nanobells. The weak interaction
different from that of the pure and long between adjacent carbon nanobells may be
carbon nanotubes because of the quantum included as a perturbation in further studies in
effects inherent to their sizes. The nanobells modeling the bamboo-like morphology of the
exhibit novel electron field emission nanofibers. We constructed a prototypical
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carbon nanobell as a model to simulate the Our ab-initio calculations are based on
general structure of short carbon nanobells. the density functional theory of Hohenberg-
Fig. 1 presents the calculated images of the Kohn and Kohn-Sham.14,1 5 ,16 17,18 In the
electron density distribution of a prototypical linear combination of atomic orbitals (LCAO)
carbon nanobell in real space. The method, we solved the Kohn-Sham equations
prototypical carbon nanobell includes 150 self-consistently by employing the Rayleigh-
atoms and consists of half of the C240 Ritz variational process.' 9' 20  In the self-
fullerene with 30 extra atoms on the bell. Its consistent calculations for the electronic

t astructure of short CNx nanobells, we

respecgtively. andathoh te size ofd ts Aemployed an extended basis set that includesrespectively. A lthough the size of thisat m c o b al of C s s s p ) anatomic orbitals of C(ls2s3s 2p3p) and
prototypical carbon nanobell may differ from N(ls2s3s 2p3p). Here C(3s 3p) and N(3s 3p)
that of fabricated samples, their fundamental are extra orbitals that are used to augment the
features are similar. These features include basis set to account for possible charge
the structural properties of the open-edge, the diffusion and polarization in the short
wall, and the closed cap of the nanobells. nanobells. The real space approach of the

LCAO method enables us to complete the
required computations using our
SiliconGraphics Origin2000 that is equipped
with 2 GB RAM (memory).

III. Results
(A). Relaxed Atomic Structure near the
Open-Edge of the Short Carbon Nanobell.
The open-edges of carbon nanobells play an
important role in their electronic properties.
The structure near the open edge of the
carbon nanobell is different from that in the
inner wall and the closed cap. We performed
total energy minimization to identify the
atomic structure near the open-edge of the
prototypical carbon nanobell. The calculated
C-C bond length on the first atomic ring at
the open-edge of the carbon nanobell is

1.37A, which is much shorter than the C-C

bond length of 1.415A in the inner atomic
rings of the bell. This reduction of the C-C
bond length for the carbon atoms at the open-
edge sites is a result of the reduction inFig. 1. The calculated images of the electron coordination number. The calculated bond

density distribution in real space for a le ngthof the bcrb T he first aomi

prototypical carbon nanobell that is viewed from length of the carbon atoms on the first atomic

different directions ring to the carbon atoms on the second ring is
o

1.40 A, which is not much different from that
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in the inner rings, away from the open-edge results.'1 ,13 , 21 Although we cannot rule out
of the nanobell. This result indicates that the the second growth model (growth on the
effect of further relaxation of the third atomic closed cap of carbon nanobells), our
ring and inner rings would be insignificant, calculations presented a clear evidence that

the first growth mechanism is highly possible.
(B). A Possible Growth Mechanism of
Carbon Nanobells. The growth mechanism (C). Nitrogen-Doped Carbon Nanobell.
of the carbon nanobells remains a difficult Experimental results indicated that the growth
problem. There are probably two major of the short carbon nanobells is highly
growth models.' The first one assumes that dependent on the nitrogen concentration in
the carbon atoms are added at the open-ends the gas mixture during the synthesis.9' 10

of the nanobells. 1,11 The second one involves Without nitrogen atoms in the growth gas
the C2 absorption process that is assisted by mixture under the same conditions, long and
the pentagonal defects on the closed caps. 1  pure carbon nanotubes, without the "bamboo-
Although both models are very interesting, like" morphology, are produced. However, it
we have technical difficulties using density was not clear why the nitrogen atoms could
functional computations to simulate the turn the growth of the would-be long carbon
second growth model. We successfully nanotubes into that of short carbon nanobells.
performed local density functional We performed total energy calculations to
computations to test the first. growth study the nitrogen-doped carbon nanobells
mechanism. Because of the active dangling (CNx nanobells). Since nitrogen atoms can

2 22bonds of carbon atoms at the open-edge of also form the planar sp 2-hybrid, we studied
nanobells, there is a high possibility that the substitutional doping of nitrogen atoms in
carbon atoms can be attracted to these sites the CNx nanobells. The substitutional doping
for growth to occur. We calculated the total of nitrogen atoms in CNx nanobells was also
energies in the following two cases. In the proposed from the analysis of experimental
first case, a ring of 20 carbon atoms attaches results. 13

to the open-edge of the carbon nanobell at a We first replaced carbon atoms with
° nitrogen atoms at the open-edge of the

bond-length of 1.415 A. In the second case, prototypical nanobell. We compared the total
these 20 carbon atoms are free. The pooyia aoel ecmae h oaccthesed 20trot eneg a s care fre. Te energies in the two cases. In the first case,
calculated total energy in case I 15 computations are carried out for the pristine
substantially lower than the corresponding carbon nanobell in the presence of ten free
value in case II. The total energy difference, atoms of nitrogen. In the second case, ten
which may also be defined as the cohesive nitrogen atoms replace ten carbon atoms on
energy of the carbon atoms in the first growth the open-edge and the substitutionally N-
model, is 4.7 eV/atom. In this growth model, doped nanobell is in the presence of ten free
see Fig. 1, C2 dimers are absorbed at the atoms of carbon. The calculated total energy
active dangling bond sites at the open end of in the second case is lower than that in the
the carbon nanobell. A C2 dimer that deposits first case by an amount of 0.5 eV per atom,
on the open-edge of the bell forms one without relaxing the structure. We then
covalent bond on the same atomic ring. Each
of the C atoms also forms one covalent bond performed total energy calculations and
withidentified the atomic positions of the relaxedwiththeC atm o th nex atmic ingand structure of the nitrogen-doped nanobell from
remains an active dangling bond towards the the otal nergymnizone callafrd

openspae. hisgro modl i cosigent the total energy minimization. The calculated
C-N bond length in the first atomic ring at the

with previous analysis of experimental
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open-edge of the nanobell is 1.376 A. The 2.0 1st ring-N

bond-length, from the nitrogen atoms of the 0
first atomic ring to the carbon atoms of the 2.0

second atomic ring, is 1.377 A. They are 0 0 L ring

close to the length of the partially double C-N 2.0 2nd ring

bond (1.352A) in heterocyclic systems.23  ý o
The C-C bond length from the first atomic 3rd ringo o 2.0

ring to the second ring is 1.397 A. The total 0 .AAAA,

energy of the nitrogen-doped nanobell, in the 2.0 inner rings

relaxed structure, is lower than that of the A A A

undoped one by 0.72 eV per atom. -4 -3 -2 -1 0 1 2
Energy (eV)

We also studied the substitutional Fig. 2. The calculated local density of states of
doping with nitrogen atoms (for carbon electrons of a nitrogen-doped carbon nanobell.
atoms) in the wall (away from the open-edge The 1st ring-N and -C refer to the nitrogen and
and the closed cap) of the prototypical carbon carbon atoms on the first atomic ring at the open-
nanobell. We used the same computation edge of the nanobell. The 2nd and 3 rP rings refer
procedure as discussed above. The calculated to the second and third atomic rings near the
total energy of the N-doped nanobell, at the open-edge. The inner rings refer to the atomic
wall position, is much higher than that of the sites away from the open-edge, including the

undoped bell by an amount of 5 eV per atom. closed cap. The Fermi level is at 0.0 eV.

This result indicates that the substitutional
doping with nitrogen in the wall of carbon We present the calcuat ocalnanobells is not energetically favored, density of states (LDOS) of the CNx nanobell

Thbelisnotencal ticuat rlts faore the in Fig. 2. The dopant nitrogen atoms stay atT hese calculated results for theth op n e g si s in h e r t ty canitrogen-doped nanobells in the prototypical the open-edge sites in the prototypical
nitrgendopd nnobllsin he rottypcal nanobell. The LDOS from the nitrogen and

model thus indicate that the dopant nitrogen nanob s o f the nitrog and
atoms prefer to stay at the open edge of the carbon atoms on the first atomic ring at the
nanobell as opposed to being in the wall (i.e. first and the second panels of Fig. 2,
lower rings) of the nanobell. Once there are rstiand the sec o panel of Fig e2
enough nitrogen atoms on the open edge of respectively. There is no N atom on otherthe nanobell, carbon atoms cannot attach to atomic rings away from the open-edge of the

open-dgoteN nanobell. Surbonatomsach an nanobell. Fig. 2 clearly shows that the N and
the oC atoms on the first atomic ring at the open-
attachment will result in nitrogen atoms being
in inner rings other than that at the open-edge, edge of the nanobell have the dominant

resulting in a configuration that is not favored trmi l . the lDoS ate Frmi

energetically. Consequently, nitrogen atoms

act as the stopper of the growth of the carbon level, from the N and C atoms on the first

nanobell. This growth mechanism for the atomic ring at the open-edge, are 0.56 and

nitrogen-doped carbon nanobells and the 0.71 states per eV per atom, respectively.

effect of the nitrogen atoms in the growth The contribution, from the second atomic ring
near the open-edge, to the LDOS at the Fermiexperiments. 9,a0,11,13 level is 0.23 states per eV per atom. The third
atomic ring and the inner rings, that include

the closed cap, have a much smaller
contribution to LDOS at the Fermi level, at
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about 0.08 states per eV per atom. Thus, 5 Q. H. Wang, et al: Appi. Phys. Lett. Vol. 72 (1998),

electrons will be emitted from the atomic 29Q.2912.
sites near the open-edge of the nanobell in 6 y. Chen, et al: Appl. Phys. Lett. Vol. 73 (1998),

field-emission experiments. The LDOS of 2119.
Fig. 2 exhibit a nearly metallic behavior. The 7 K. A. Dean and B. R. Chalamala: Appl. Phys. Lett.

real nanobell samples in experimental studies Vol. 76 (2000), 375.

mostly involve multilayers of graphite sheets 8 j. M. Bonard, et al: Phys. Rev. Lett. Vol. 81 (1998),
1441.and the nanobells stacked one on top of the 9 X. Ma, E. Wang, W. Zhou, D. A. Jefferson, J. Chen,

other. The weak interactions between graphite S. Deng, N. Xu, and J. Yuan: Appl. Phys. Lett. Vol.

layers in these nanobells and that between the 75 (1999), 3105.
bells may further broaden the electronic 10 X. Ma, E. G. Wang, R. D. Tilley, D. A. Jefferson,

energy levels. Consequently, a metallic and W. Zhou: Appl. Phys. Lett. Vol. 77 (2000), 4136.

behavior may be observable in the "' X. Ma, and E. G. Wang: Appl. Phys. Lett. Vol. 78
(2001), 978.

measurements of the electronic structure of 12 E. G. Wang, et al: Carbon Vol. 41 (2003), p.18 2 7 .

N-doped nanobells. 13 D. Y. Zhong, S. Liu, G. Y. Zhang, E. G. Wang: J.
of Appl. Phys. Vol. 89 (2001), 5939.

IV. Conclusion 14 P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136

nconclusion, we performed ab-initio (1964), B864; W. Kohn and L. J. Sham: Phys. Rev.
Vol. 140 (1965), Al 133.

density functional calculations to simulate the 15 G. L. Zhao, D. Bagayoko, and L. Yang: Phys. Rev.

growth, structural, and electronic properties B vol. Vol. 69 (2004), 245416.

of prototypical carbon nanobells. In the 16 j. Callaway and N. H. March: Solid State Physics,

nitrogen-doped carbon nanobells, nitrogen vol. 38, Edited by H. Ehrenreich, D. Turnbull, and D.
Seitz, (Academic Press, New York, 1984), p. 13 5 .

atoms that are attracted to the open-edge of 17 G. L. Zhao, D. Bagayoko, and E. G. Wang: Modem

the nanobells may play a role of stopper of Physics Letters B, vol. 17 (2003), 375.
the growth of the nanostructures. The 18 D. Bagayoko, G. L. Zhao, J. D. Fan, and J. T.
calculated local densities of states of the CN. Wang: Journal of Physics: Condensed Matter, Vol.

nanobells indicate that electrons are most 10, (1998), 5645.
emitted from the atomic sites near the 19 S. G. Mikhlin: The Numerical Performance of

Variational Methods, (Wolters-Noordhoff Publishing,

open-edge of the carbon nanobell in field- 1971), ch.1, 2, & 7.
emission experiments. This result agrees with 20 S. H. Gould: Variational Methods for Eigenvalue

experimental observations. Problems, (University of Toronto Press, 1957), ch. 2.
21 j. Gavillet, A. Loiseau, C. Journet, F. Willaime, F.
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Abstract. We present a universal relation between the densities of states near Van Hove
singularities and the effective electron masses in 1-dimensional (1-D) semiconductors.
The relation can be utilized as a new method to determine the effective masses of charge
carriers of 1-D semiconductors in theoretical calculations and in experimental
measurements. The calculated results, utilizing the relation for 1-D single-walled carbon
nanotubes (SWCNTs), agree well with that of the conventional calculations when both
approaches utilize the outputs of ab-initio density functional computations.

I. Introduction. materials. This relation can be used as a
One-dimensional (1-D) materials, such new method to determine the effective
as carbon nanotubes (CNTs), have masses of charge carriers in any 1-D
emerged as attractive materials for semiconductors.
applications in molecular-scale
electronics.""' The electronic properties II. Densities of States and Effective
of 1-D CNTs have been extensively Masses in 1-D Materials.
studied in recent years using various The electron density of states (DOS) per
experimental tools and theoretical unit cell, G(F), of a i-D material can be
calculations.""'"" Particularly, scanning calculated by the following expression.'
tunneling microscopy (STM) is a L(F,) = L 1
favorable tool for measuring atomic G(•)=-•( de. k

structures, density of states (DOS) of -dk
electrons, Van Hove singularities, and
energy band gaps. However, there are where etk is the energy of the i-th
some other physical quantities that electron band at point k in the
require further studies. One of them is irreducible Brillouin zone; and L is the
the effective mass of charge carriers length of the unit-cell.
(electrons or holes), an important At an extremal point of an
physical quantity that characterizes the electron energy band, the first derivative
electronic transport properties of of the band energy with respect to the
materials. Here, we present a universal wave vector k is zero, that is dek /dk -
relation between the densities of states 0. A Van Hove singularity occurs at
of electrons near Van Hove singularities this point. We can then approximate the
and effective electron masses in 1-D band dispersion as a parabolic
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expression in the neighborhood of the bn1 1 and
extremal point that particularly includes band as D1 (E) = 4r a- S -
the top or the bottom of an energy band,
Sik -=6i 't-ai(k -ki)2 (2) mI = h

where k, and ei are the location and - 2al

the band energy at the extremal point, If a second single band of the same
material or another 1-D material near therespectively. Here a,. > 0. When the VnHv iglrt s
Van Hove singularity is,

second derivative of the band energy 6 2k = a ± a2 (k -k 2 )2 (6)
with respect to the wave vector k is also
zero, the effective mass of the charge We then have the density of states and
carrier near the Van Hove singularity is the effective mass of this second single
not defined. Therefore, we do not band as D2 (0) 1 1 and
discuss this case further in this article. 4g Fa2 V - 62 I

We can then calculate the h2

electron density of states per unit cell m2 =--

near the Van Hove singularity as 2a 2

follows Using the above equations, we
D(•) = G(F)/L = identify the following relation,

4/- Ca . =ja. -2 = Dl(e+ 6-) (7)

where D(c) is a reduced density of states, mD (a + 6 2)]

which does not depend on the length of
the unit cell. The above relation does not

We can calculate the effective depend on the energy. Once the effective
mass of charge carriers using the mass for a single electron band of a 1-D
electron energy band dispersion, material is known, we can then take it as

h2 h 2 a reference. The effective masses of
mi = F2 = - (4) charge carriers (electrons or holes) for

k 2any other single bands of other 1-D

dk2  materials can be calculated using the

where m* is the effective mass of charge above relation and corresponding
densities of states near Van Hove

carriers (electrons or holes) near the sities.

extremal point of the i-th band. singularities.

Ill. A Relation between DOS and (B). Case of bands that are degenerate
IDi at an extremal point, but are not

in 1-D Materials. degenerate elsewhere. If two bands are
(A). Case of single bands. We first degenerate at an extremal k-point, but
consider the case of a single band. The are not degenerate elsewhere, we may
dispersion of a single electron band of a assume the dispersions of the two as,
1-D material near its Van Hove (i 62±V(k-k) 2  (8)
singularity can be written as w

Elk 61 ±a, k - , )2(5) where i=l or 2 for the' two bands,
1k = e1 ± a1 (k - k1 )2 (5) respectively. We may take a single band

We obtain the density of states and the of a l-D material as a reference, for
effective electron mass of this single
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which the band dispersion follows Eq. singularity. The energy of the top of the
(5). The density of states and the first valence band (E(')) has been
effective mass of this single band has chosen to be zero in Table 1. "Deg"
been discussed in the previous section. refers to the degeneracy of the bands.
We then identify the relation as, Dm (in states/eV) is the peak value of

the density of states at the Van Hove

2 D ((9+ 1)2 singularity; it was used to calculate the

i L 2Dl (e8+ )j (9) effective mass W using the universal
relation, Eq.(7) or (9). We utilized the

r-* effective mass of charge carriers of
2  SWCNT (10, 0) at E"'• as the single

effective mass and the density of states

of the doubly degenerate bands, reference for the calculations of the

respectively, effective masses (iii*) of other
SWCNTs. As a comparison, we also

m_, 1 + 2) (calculated the effective mass m* using
4~2 = M2 the results of the conventional method

.2 2 for which we utilized the ab-initio
where m 1 = _ and m (. electronic structure calculations. We

2b1  2b2  performed self-consistent, ab-initio
The above discussions can also density functional calculations to obtain

be extended to three or more energy the electronic structure of the SWCNTs,
bands that are degenerate at an extremal using a linear combination of atomic

6-10point, but are not degenerate elsewhere. orbital (LCAO) method.6- Particularly,
the ab-initio calculations for the

IV. Applications. electronic structure of nonsymmorphic
Although there is a wealth of SWCNTs (8, 4) and (10, 5) are very
experimental results regarding the difficult tasks, since there are 112 and
density of states of electrons in single- 140 atoms in their tubule unit cells,
walled carbon nanotubes (SWCNTs),1 'i' respectively. The calculated results of
the study of the effective masses of the the effective masses h* of the charge
charge carriers in these materials is far carriers in SWCNTs utilizing the
from complete. As a test case of the new universal relation Eq. (7) or (9) agree
method to study the effective masses of very well with those from the
the charge carriers in 1-D materials, we conventional method of ab-initio
applied Eq.(7) or (9) to some SWCNTs. electronic structure calculations, as
We list some of the results in Table 1, demonstrated in Table 1.

where m0 is the free electron mass. E•I)

in Table 1 refers to the first valence band Acknowledgments: the work was funded
near the Fermi level (EF), whereas EfI) in part by the US Department of the
refers to the first conduction bands from Navy, Office of Naval Research (ONR

refrs o te frstcoducionbans fomAward No: N00014-05-1-0009) and by
EF. Em is the energy (in eV) of the top US NASA (Award No. NCC 2-1344).

of a valence band or the bottom of a

conduction band near its Van Hove
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Table 1. The calculated effective masses of charge carriers in various 1-D SWCNTs,
where m* is the calculated effective mass from ab-initio density functional
computations; R* is obtained using the universal relation Eq. (7) or (9); and Dm is the
peak value of the density of states near Van Hove singularity.

Band Em Deg m*(ab-initio) Dm R* (Eq. 7 & 9)
(eV) (MO) (states/eV) (mo)

SWCNT (10, 0)
E"1' 0.0 2 0.10 0.73 0.10

E('" 0.95 2 0.10 0.72 0.10

SWCNT (13, 0)
E,') 0.0 2 0.09 0.66 0.08

E")• 0.75 2 0.09 0.66 0.08

SWCNT (17, 0)
E(') 0.0 2 0.11 0.73 0.10

E(1' 0.54 2 0.11 0.72 0.10

SWCNT (22, 0)
E(1) 0.0 2 0.057 0.51 0.05

E(1) 0.44 2 0.056 0.51 0.05
SWCNT (8, 4)
E$1'2) 0.0 0.13 0.76 0.11

EC1'2) 0.96 0.13 0.76 0.11

SWCNT(10, 5)
E"1, 2

) 0.0 0.11 0.79 0.12

E( 1'2) 0.74 0.11 0.79 0.12
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Abstract

We report calculated, electronic properties of wurtzite zinc oxide (w-ZnO). Unlike many
previous theoretical works, our linear combination of atomic orbital (LCAO)
calculations, implemented following the Bagayoko, Zhao, and Williams (BZW) method,
employed a local density approximation (LDA) potential to obtain band gaps and other
results in agreement with experiments. We discuss the band structures, the calculated
direct band gap (3.2 to 3.3 eV), and the electron effective mass (0.25 to 0.26 m0 ).

PACS Numbers 71.20.Nr, 71.15.Ap, 71.15.Mb

I. Introduction and Motivations

Nowotny et al [1] and Thomas [2] provided some of the earliest experimental data on
wurtzite zinc oxide (w-ZnO), the former on the lattice parameters and the latter on the
band gap. A representative set of measurements of the band gap of bulk w-ZnO shows a
robust agreement on its low temperature value of 3.44 ± 0.06 eV. [1-7] This range, i.e.,
± 0.06 eV, is much larger than experimental uncertainties; it simply reflects differences
that a traceable to those of actual lattice constants, measurement techniques and
temperatures, and other factors. Some of these factors (impurities, defects) are associated
with the growth conditions of the samples. Srikant and Clarke [8] appear to have settled
the debate on the room temperature band gap of w-ZnO. They utilized different
measurement techniques to arrive at a value of 3.30 eV. These techniques included
reflection and transmission absorption, ellipsometric spectroscopy, Fourier transform
infrared (FTIR) spectroscopy, and photoluminescence. This multitude of measurement
techniques avoided limitations reported to afflict some previous investigations that
reported a room temperature band gap of bulk w-ZnO 0.1 and 0.2 eV below the currently
accepted value of 3.30 eV. Other groups reported photoemission [9-11] results for the
band structure, the electrons effective mass [12] and the bulk modulus [13].

Several groups [14-20] have reported measured band gaps for films of w-ZnO grown by a
variety of techniques. These growth methods included spray pyrolisis [14], pulsed laser
deposition [16,18], cathodic electrodeposi~tion in aqueous solutions [17], ion layer gas
reaction (ILGAR) and rf magnetron sputtering [19], and plasma enhanced chemical vapor
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deposition (PECVO). [20] Li and Coworkers [20] discussed the variation of the lattice
parameters of films with changes in growth temperatures. They also noted that despites
these variations, the lattice parameters (a and c) of the wurtzite films are within 3.4x10-3

Angstroms from the corresponding values for the bulk material. The reported band gaps
for the films are within the range of -0.14 to +0.06 from 3.44 eV. Studenikin et al [14]
found a gap of 3.30 eV, after annealing at 400 C, for all their films grown by spray
pyrolisis. This result was confirmed by Pauport6 and Lincot [17] for films grown by
catholic electrodeposition in aqueous solutions. The band gap of their films as deposited
was 3.5 eV. These authors [17] noted that growth conditions affect the gap. In
particular, the presence of nitrate or perchlorate ions is reported to lead to a band gap of
3.30 eV. Using both transmission and photoluminescence techniques, Muth et al.
obtained band gaps of 3.40 eV and 3.45 eV at 295 K and 77 K, respectively. Within the
understandable differences due to growth stress, thermal expansion mismatch, and
impurities [8], the above band gaps for w-ZnO films are comparable to those for high
quality bulk w-ZnO samples.

In contrast to the above agreement between experiments, theoretical calculations
reported values of the band gap that cover a wide spectrum and mostly disagree with
measurements. The Hartree Fock (BF) calculations [21-24] led to band gaps above 11
eV, more than three times the measured value. When some correlation effects are taken
into account, the modified HF calculations of Jaffe et al [21] produced a gap of 8.61 eV.
Empirical pseudopotential [25] and empirical KKR [26] calculations predictably led to
3.5 and 3.30 eV, respectively. These values are close to the experimental gap of 3.44 eV.
The fitting involved in these empirical approaches can adjust some parameters so as to
reproduce the experimental band gap. Local density approximations (LDA) potentials,
depending on the computational methods [23, 27-33], led to values between 0.23 eV and
2.26 eV for the band gap of w-ZnO. Table 1, further below, identifies some of the
various methods and applicable lattice parameters. The computational approaches include
the pseudopotential (PP), the augmented plane wave (APW), the full-potential linearized
augmented plane wave (FLAPW), and the linearized muffin-tin orbital (LMTO) methods.
The Green function and screened coulomb approximations (GWA) calculations did not
totally resolve the above failure of ab-initio calculations to obtain the measured band gap
of w-ZnO. The GWA work of Oshikiri and Aryasetiawan [31], for two different sets of
lattice constants, obtained 4.28 (4.06) and 3.45 (3.63) eV respectively, with the values
between parentheses resulting from using additional higher energy product basis for
improved accuracy. The GWA calculations of Usuda et al [30] obtained a gap of 2.44 eV
with both the LMTO and LAPW methods. This value is 1 eV below the measured value
of 3.44 eV.

The gross disagreement between ab-initio calculations and experiment, as far as the band
gap is concerned, basically precludes an extensive discussion of calculated electron
effective masses, inasmuch as the latter are determined by the curvature of the band in the
immediate vicinity of the lowest energy in the conduction band. Indeed, difficulties
responsible for the disagreement on the gap are also expected to affect not just the
location of the lowest energy in the conduction band but also the curvature of said band.
With the above understanding, we note that Oshikiri et al [34] reported quasiparticle (and
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LDA) effective masses of 0.25 (0.21), 0.25 (0.21), and 0.21 (0.18) mo in the kx, ky, and k,
directions respectively, where the values between parentheses resulted from their LDA
calculations. These results were obtained for experimental lattice constants of 3.24961 A

5.20653 A and u parameter of 0.345. Lambrecht et al. [33] noted that their calculated
values of 0.23 m0 and 0.21 m0 , in the parallel and perpendicular directions, are likely to
be underestimates. Xu and Ching [35] reported 0.37, 0.28, and 0.32 m0 in the F-K, F-A,
and F-M directions in the Brillouin zone, for lattice constants given in Table 1. These
authors utilized the orthogonalized LCAO formalism and employed a local density
potential plus additional exchange derived with Wigner's interpolation. The 1966
measurements by Baer [12] found the electron effective mass for w-ZnO to be 0.24
± 0.02 m0 . The above LDA results for the electron effective mass are uniformly lower
than this experimental value.

The above overview of previous theoretical results, with the general disagreement
between calculations, on the one hand, and between calculations and the firmly
established experimental data, on the other hand, provides the motivation for this work.
The wide spread of the LDA results for the band gap of w-ZnO, from 0.23 to 2.26 eV,
suggests that limitations other than those genuinely attributable to the potential affected
these results. Since 1998, Bagayoko, Zhao, and Williams have introduced a
computational method [36-39] that clearly showed that LDA potentials are no longer
known to lead to woeful underestimates of the band gap of semiconductors. Indeed,
using the Rayleigh theorem, these authors introduced a new form of convergence for
variational computations that utilize a basis set. The need to seek methodically [36-37] a
basis set whose size is converged [i.e., the optimal basis set] vis a vis the description of
the occupied states, they argued, straightforwardly arises from (a) the use of only the
wave functions of the occupied states to construct the charge density, the potential, and
the Hamiltonian in the iterative process and (b) the Rayleigh theorem that asserts the
possible, continuing lowering of some unoccupied energies or bands when basis sets
larger than the optimal one are utilized. This extra-lowering of some unoccupied
energies, even though the physics (i.e., the Hamiltonian) is no longer changing, was
identified as a basis set and variational effect that has afflicted most of the previous
calculations, including those utilizing the generalized gradient approximation (GGA) of
density functional theory (DFT) [40-41] and the GWA approximation [42]. Hence, the
clear motivation of this work is to utilize properly, as per the BZW method, a local
density potential to describe the electronic and related properties of w-ZnO. In the
remaining of this article, we briefly present our method and discuss our results, which are
basically in agreement with experiment, particularly as compared to previous, theoretical
ones.

II. Method

Our computational method has been extensively described in previous publications [36-
39]. It is characterized by the use of a local density approximation (LDA) potential [43]
as parameterized by Vosko et al [44], the well-known linear combination of Gaussian
orbitals (LCGO), and the rigorous application of the BZW method in carrying out the
calculations. We utilized a program package developed and refined over decades [45-46].
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Our calculations are non-relativistic and are performed at zero temperature. They
commence with the LCAO, self-consistent calculations of the electronic energy levels of
the atomic or ionic species that are present in the system under study. For wurtzite ZnO,
these species are Zn (Zn2+) and 0 (0 2-). Specifically, the calculations for the neutral
atoms are utilized in _preliminary investigations of the solid state. The output of the
preliminary calculations is employed to compute ionic charges, if any, in the solid. We
found zinc and oxygen elements, in the solid, to be closer to Zn2+ and 02- than to neutral
Zn and 0 or Zn+1 and 01-. Consequently, ab-initio calculations were performed for Zn21

and 02- in order to obtain the "atomic" basis sets to be employed in the actual solid state
calculations.

These self-consistent, solid state calculations, as per the BZW method, started with the
minimal basis (MB) set, i.e., the one just enough to account for all the electrons in the
system. Calculation II utilized a basis set comprised of the MB set plus orbital(s)
representing the next excited level(s) in the ionic (or atomic) species in the system. The
occupied energies from Calculations I and lI were compared numerically and graphically.
As is generally the case, they were different. Hence, Calculation III was performed with a
basis set including that of Calculation I1 as augmented with orbitals representing the next
excited levels of the ionic species in the system, i.e., Zn2+ and 02-. As discussed below,
the occupied energies from Calculations II and III are the same, within computational
uncertainties. Hence, the basis set of Calculation II is our optimal basis set, i.e., the one
utilized for all results reported here. If the Rayleigh theorem did not apply and if the
wave functions of the occupied states were not the only ones utilized in the interactive
process to construct the charge density and the Hamiltonian, then the results of
Calculation m, with sinking unoccupied bands, would have been the physical answer on
the account of basis set completeness considerations. The actual size of the basis set
naturally depends on the types of functions, with plane wave approaches entailing many
more basis functions than those utilizing exponential or Gaussian functions.

Computational details germane to the replication of our work follow. ZnO (or zincite)
possesses a hexagonal lattice in the space group C46v. There are four atoms per unit cell
in the (2b)47 positions as follows: Zn: (0, 0, 0), (1/3, 2/3, 1/2); 0: (0, 0, u), (1/3, 2/3, 1/2 +
u). The self-consistent computations were performed for different sets of lattice
parameters as shown in Table 1. For a given calculation, we employed a mesh of 24 k-
points, with proper weights, in the irreducible Brillouin zone. Our criterion for self-
consistency rested on the convergence of the potential to a difference around 10-5

between two consecutive iterations. Approximately 60 iterations were needed to reach
self-consistency. The computational error for the valence charge was about 0.0002 for 52
electrons. For the implementation of the BZW method, our first self-consistent
calculation utilized the atomic orbitals of Zn 2+(ls2s3s4s2p3p3d) and 02(ls2s2p).

Calculation II included the (4p) orbital on zinc while Calculation III further added the 3p
orbital on Oxygen. The comparison of the occupied states from Calculation II and III
showed that the convergence of the size of the basis set, vis a vis the description of the
occupied states, was reached with Calculation II. The basis set of this calculation, the
optimal basis set, was employed for the results discussed below.
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III. Results

Some of our calculated band structures are shown in Figures 1 and 2. Figure 1 illustrates
the dramatic differences between our results and those or previous LDA and other
calculations. Essentially, there are no major differences between our calculated occupied
bands and some previously reported ones. For the unoccupied bands, however, out results
are distinctively far those of previous calculations. In Figure 1, the lowest unoccupied
energy at the F point is shifted downward by approximately 2.2 eV as compared to its
value obtained with the optimal basis set. Clearly, the differences between the low
energy conduction bands from calculation II and III are far from those expected from a
rigid shift. Hence, they cannot be corrected with simplistic "scissors" operations.

The above differences between our calculated conduction bands and those in previous
reports explain the reason our calculated band gaps of 3.2 and 3.278 eV, at lattice
constants specified in Table 1 and Figures 1 and 2, are very close to experimentally
measured values. The differences between our results from the calculation at the
experimental lattice constants in Figure 2 and the one just below it, in Table 1, are mainly
due to the difference in the value of u, given that the lattice parameters are not far apart.
Schrber and coworkers found a similar situation in their LMTO and GWA calculations.
[27] The value of u, understandably, strongly influences that of the band gap.

Our calculated, total (DOS) and partial density of states (pDOS) in Figures 3 and 4
naturally reflect the differences discussed above for the electronic energy bands. In
particular, the location of the lowest conduction bands with respect to the Fermi energy in
these figures is drastically different from that in most of the previous theoretical
investigations. The inset in Figure 3 illustrates our concept of a practical band gap. [37]
Essentially, due to instrumental sensitivity, analysis techniques, and related uncertainties,
an experimental work could find values of the band gap from the theoretical minimum of
3.278 to close to 4.0 eV. This possibility, practically non-existent in highly sensitive
photoluminescence measurements, increases to a likelihood if simple optical absorption
is the sole measurement technique. The determination of the onset of the band edge
absorption is a source of large uncertainties, in addition to the fitting often involved in the
determination of the band gap.

The electron effective masses from our calculations exhibit a slight anisotropy, as
expected in a wurtzite structure. The effective mass is a measure of the curvature of the
calculated bands. The agreement between calculated and measured effective masses
indicates an accurate determination of the shape of the bands. We calculated the
effective masses of the n-type carriers of ZnO, using the electronic structure from
calculation II (the solid line in Fig. 1). Near the bottom of the lowest conduction band at
the gamma point, we obtained 0.254, 0.260, and 0.264 mo in the F-A, F-K, and F-M
directions, respectively, for the lattice constants in Figure 1. For the conduction band in
Figure 2, the corresponding values are 0.257, 0.258, and 0.257 m0 respectively. These
values agree very well with the measured value of 0.24 mo, within the experimental
uncertainty [12] of 0.02 m0 , and with the experimental value of 0.275 mo. [48] The above
excellent agreement with experiment and the underestimates from previous LDA
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calculations are graphically illustrated in Figure 1. Indeed, the drastic extra-lowering of
the low lying conduction band (dotted lines in Fig. 1), in calculations employing basis
sets larger than the optimal one, results in a significant decrease of the effective mass. In
contrast, the lowest lying conduction band at F, as obtained with the optimal basis set
(solid lines in Fig 1), leads to larger values of the electron effective mass.

IV. Conclusion

We have performed ab-initio, self-consistent calculations of the electronic energy bands,
the density of states (DOS), and of the electron effective masses of wurtzite zinc oxide
(w-ZnO). The implementation of the Bagayoko, Zhao, and Williams (BZW) procedure,
within the linear combination of atomic orbitals, led to occupied and unoccupied energy
bands respectively similar and drastically different from results of previous calculations.
Our calculated band gap of 3.278 eV, at an experimental lattice constant, is only 5%
smaller than the measured value of 3.44 eV. This work strongly indicates that the
previous LDA band gaps that are 34% to 93% smaller than the experimental value suffer
from the basis set and variational effect described above and possibly from other
computational limitations; hence, their gross disagreement with experiment should no
longer be ascribed to a failure of LDA. Our calculated electron effective masses are in
excellent agreement with experiment, within experimental uncertainties.
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Table 1. Calculated, fundamental band gaps (Eg, in eV) of w-ZnO, along with
pertinent lattice constants in Angstroms, compared to experiment. Numbers in
the last four columns, for a given row, are from the reference cited in that row.

Computational a (A) c (A) u Eg (eV)
Method
LCAO-BZW 3.2501 5.2071 0.3817 3.20
(Present work) 3.2496 5.206 0.345 3.28

3.2530 5.2130 0.3817 3.21
3.2700 5.1800 0.381 3.22

Zn1+ Pseudopotential 3.25 5.21 2.13a
Zn12+ Pseudopotential 3.25 5.21 0.23a

Local Density Pseudopotential 3.23 5.18 0.23_
Approximation APW 1.40c
(LDA) LAPW 3.253 5.2129 0.3817 0.77a
Potentials FLAPW 0.93e

LMTO 3.2427 5.1948 0.3826 1.15t
LMTO 3.2496 5.2065 0.345 0
LMTO 3.253 5.2129 0.3825 0
LMTO (cubic, a=4.57 A) 2.269
FP-LMTO 0.382 1.813"

LDA & Additional Orthogonalized LCAO 3.249 5.207 0.345 0.88'
Exchange
LDA+SIC Pseudopotential 3.29 5.29
Xa Potential Pseudopotential 3.25 5.21 1.58a

GWA LMTO 3.2427 5.1948 0.3826 4.28 and
4.06a

GWA LMTO 3.2496 5.2065 0.345 3.45 and
3.63a

GWA LMTO 3.253 5.2129 0.3825 2.44d

GWA LAPW 3.253 5.2129 0.3817 2.44c
Model GWA FLAPW 4.23e
Empirical Pseudopotential (EMP) 3.5]
Empirical KKR 3.30"
Experiment (Bulk, Low Temperatures 3.44
Experiment (Bulk, Room Temperature) 3.30

aReference 27 bReference 28 CReference 29
dReference 30 eReference 23 fReference 31

gReference 32 hReference 33 'Reference 35
]Reference 25 kReference 26
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Figure 1. Electronic band structures of wurtzite zinc oxide (w-ZnO) from Calculations II
and III of the BZW method. The solid lines show the results of calculation II and the
dashed lines represent the bands from calculation III. Calculation II gives the final
electronic structure of ZnO with the optimal basis set. The Fermi levels from the two
calculations are superimposed. The lattice constants are a = 3.2501 Angstroms (A),
c = 5.2071 A, and u = 0.3817. The band gap is 3.2 electron volts (eV).

9,

0. -----------------------
L" -3

-6

A L M A H K

10



Figure 2. Calculated band structure of wurtzite zinc oxide (w-ZnO), as obtained with
BZW method, for experimental lattice constants of a = 3.2496 A, c 5.206 A, and
u = 0.345. The band gap is 3.278 eV.
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Figure 3. Calculated total density of state (DOS) for w-ZnO, as derived from the bands
shown in Fig. 2. The inset indicates that experimental apparatus or techniques that are
not very sensitive could find band gaps much larger than the theoretical minimum of
3.278 eV.
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Figure 4. Calculated partial density of states (pDOS) for w-ZnO at the experimental
lattice constants of a = 3.2496 A, c = 5.206 A, and u = 0.345. The graph illustrates the
influence of the zinc d and the oxygen p in the upper valence bands. Zinc s dominates in
the lowest conduction band.
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We present theoretical predictions of electronic, structural, and elastic properties of cubic indium
nitride in the zine-blende structure (c-InN). Our ab initio, self-consistent calculations employed a
locil density approximation potential and the Bagayoko, Zhao, and Williams implementation of the
linear combination of atomic orbitals. The theoretical equilibrium lattice constant is 5.017 A, the
band gap is 0.65 eV, and the bulk modulus is 145 GPa. The band gap is 0.74 eV at an experimental
lattice constant of 4.98 A. © 2004 American Institute of Physics. [DOI: 10.1063/1.1790064]

1. INTRODUCTION AND MOTIVATIONS ployed the pseudopotential (PP) method produced negative

14 band gaps ranging10,1113-15,9 from -0.18 to -0.40 eV. Other
Several review papers - have discussed the properties LDA calculations, 11'116'19 using variations of the linearized

and applications of wurtzite and zinc-blende indium nitride augmented plane wave (LAPW),111 2 linear muffin-tin orbital
(c-InN). In particular, the value of the band gap of wurtzite (LMTO),16 and the atomic sphere approximation (ASA)
InN (w-InN) has recently attracted much interest- 5 due to (LMT1) and the at d s app io n (ASA)
seemingly conflicting findings from experimental investiga- (Ref. 19) obtained c-InN band gaps of 0.08-0.48 eV. The

tions. The current and potential applications of InN based generalized gradient approximation (GGA),p 'al within the
semiconductor devices certainly warrant a rapid resolution of pseudopotential approach, led to a gap value13 of -0.55 eV.

the unsettled issues relative to these important materials. 1-5 Self-interaction corrections to LDA, quasiparticle (QP) ap-

Indeed, light emitting diodes (LEDs), laser diodes (LDs), and proaches, and exact exchange calculations reported c-InN

photodiodes (PDs), over a wide range of energy, from ultra- band gaps of 0.43-1.40 eV as shown in Table I' below. The
violet to infrared wavelengths, are some of these applications very recent empirical pseudopotential result of Fritsch et
of InN based semiconductors. The direct band gaps of high al.22 is 0.592 eV for the band gap of c-InN. Our focus here is
quality wurtzite InN films are reported3 -5 to be from 0.65 to mainly on the LDA results that are very small or negative for
1 eV, depending on carrier concentration and other sample the band gap of c-InN. This situation constitutes another mo-
characteristics. The band gap of cubic InN (c-InN) is ex- tivation for this work, besides the lack of experimental data
pected to be in this range or slightly below it. Hence, InN on the electronic and related properties of c-InN. Our LDA

films could be critical for the fabrication of high speed LDs calculations recently resolved the controversy that was sur-
and PDs for optical communication system's. 3 Unlike w rounding the band gap of wurtzite InN 23 In particular, our
-InN, the most stable phase of InN in ordinary conditions,muchreminsto he now abut cInN 'Tis itutio is LDA calculations, within the Bagayoko, Zhao, and Williamsm uch rem ains to the know n about c-InN . This situation is ( Z ) i p e e t t o f t el n a o b n t o f a o i
partly due to the serious difficulties associated with the (BZW) implementation of the linear combination of atomic
growth of orbitals (LCAO) method, obtained a w-InN band gap of
c-InN.3A4  0.88 eV, in very good agreement with measurements from a

These difficulties are apparent in the work of Yamamoto recent series of experimental investigations.23

et al.6 who grew c-InN on GaAs and a-A120 3 substrates. Further, utilizing features of the calculated density of
They reported the appearance of w-InN when the film thick- states (DOS), we showed23 the possibility of obtaining a gap
ness was over 0.05 Am, and at thicknesses over 0.2 Am,. the as large as 2 eV if optical absorption is the only measure-
c-InN films grown on GaAs were completely covered by ment technique utilized. Difficulties in precisely determining
hexagonal indi'um nitride. The films grown on sapphire con- the band edge, analysis techniques, and related uncertainties

6tained columnar, fibrous structures. Unlike Yamamoto et al. explain this assertion. Our work on w-InN added to a series
who utilized metalorganic vapor-phase epitaxy (MOVPE) of articles according to which it is no longer correct to state
Tabata et al.,7 Chandrasekhar et al.,8 and Cimalla et al.9 em- that local density approximation woefully underestimates thethate lolecal denait appitamtio woefull underowstimaNesilms
ployed molecular beam epitaxy (MBE) to grow c-InN films, band gaps of semiconductors. Hence, and in the light of the
These authors reported values of the lattice constant ofCCThese authors reported1 v.,al espofthelattice constant of mostly negative values of the band gap of c-InN, there exists
c-InN of 4.97±0.01, 4.980, and 4.986 A, respectively. WeZ)
are unaware of reports of experimental investigations of the a compelling rationale for an implementation of the LDA
electronic and elastic properties of c-InN. Hence, an aim of that does not suffer from an effect believed to be mostly
this work is to predict electronic and related properties of c responsible of the dismal underestimation of band gaps. In-

-InN, including the band gap. cidentally, the band gap problem was actually a symptom of
The need for this work is partly underscored by the dis- a more general and unrecognized problem stemming from

agreement between prfevious theoretical findings.10- 22 Previ- unoccupied levels or bands that are affected by the effect
ous local density approximation (LDA) calculations that em- referenced above and recalled below.

0021-8979/2004/96(8)/4297/5/$22.00 4297 © 2004 American institute of Physics
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TABLE 1. Experimental and theoretical lattice constants (a, in angstroms) for c-InN, along with the calculated values of the bulk modulus gigapascal and of
the fundamental band gap (eV). Results in the last three columns, for a givenrow, are from the reference cited in that row.

Computational Method a(A) B(GPa) Eg(eV)

5.017 145 +0.65

LCAO-BZW (Present work) 4.98 +0.74

4.95 145 -0.362

5.004 140 -0.40"
4.95 145'

Pseudopotential Method (PP) 4 9 7 d

4.932 140 -0.35'
4.788 155f

Local Density Approximation (LDA) Potentials -0.181

LAPW 4.94 14 5 c

-0.111
Full potential LAPW 5.03 138 -0.48h

-0.4'
Full Potential LMTO 4.92 139

-0.11
Atomic sphere approximation (ASA) +0.02 and +0.0 8 k

5.06 120c
Generalized gradient approximation (GGA) PP 5.09 118 _0.55b5.109 118 -. 5

+0.432
LDA plus self-interaction correction (SIC) 5.05'

QP Calculation PP +0.52V

QP+SIC PP +1.31'

DFT Exact Exchange +1.49

DFT, SX ASA +I

Estimate of the bulk modulus of zinc-blende indium nitride (c-InN) using elastic properties of wurtzite InN 137'

Empirical Pseudopotential Calculations (EMP) +0.592m

Experimental: Measured lattice constants 4.97±0.01n
4.980

4.986P

'Reference 10. 'Reference 16.
bReference 13. JReference 17.
cReference 11. kReference 19.
dReference 15. 'Reference 20.

'Reference 18. mReference 22.
fReference 21. 'Reference 7.
gReference 14. 'Reference 8.
"hReference 12. PReference 9.

II. METHOD AND COMPUTATIONAL DETAILS from a calculation are equal, within computational uncertain-

We performed zero temperature, nonrelativistic calcula- ties, to their corresponding ones from the calculation that

tions of the electronic and related properties of c-InN. Our follows it. Then, the output of the former calculation pro-

ab inito, self-consistent calculations employed the local den- vides the physical description of the material under study and
sity approximation potential of Ceperley and Alder as pa- the related basis set is dubbed the optimal basis set. Accord-
rametrized by Perdew and Zunger.2  As stated above, we ing to the Rayleigh theorem,26 some of the unoccupied bands

used the LCAO. The feature distinguishing our computa- from the latter may be lower than their counterpart from the

tional method from the previous investigations noted above former.24 -26'29'3 °

The above additional lowering is the basis set and varia-.consists of our implementation of the BZW procedure. In so Z

doing, we started the calculations for c-InN with a minimal tional effect inherently associated with variational calcula-

basis set. We subsequently performed several other self- tions of the Rayleigh-Ritz type. In the iterative process, the

consistent calculations with larger and larger basis sets. The use of the wave functions for the occupied states only in the

basis set for any of these calculations was obtained by aug- construction of the charge density, and hence the potential

menting the one for the previous calculation with the orbital and the Hamiltonian, ensures the exhaustion of the account-

describing the next excited level of the atomic or ionic spe- ing for the physical interations when the occupied energies

cies present in the system. The occupied bands of a given converge vis-a-vis the size of the basis set. As fully ex-
0 24-26,29

calculation are comp ared to those of the previous. These plained elsewhere,-9 however, some unoccupied ener-
comparisons, particularly for the first two calculations, often gies will continue to be lowered as the basis set is increased

show differences (in numerical values, branching, or curva- beyond the optimal one. The sizes of the minimal and opti-
ture). This process continues until the occupied energies mal basis sets vary vastly with the type of functions in the
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TABLE II. Eigenvalues (eV), along high symmetry points, for zine-blende 10
indium nitride (c-InN) as obtained from LDA-BZW calculations for a 8

=5.017 A, the theoretical equilibrium value. The Fermi energy of 6

-0.216 87 eV is set to zero in the table. 4

> 0 .. .. .. .. . . ..
L r K -2

>" -- 4
-15.5192 -14.8427 -15.6493 -15.5949 t: -
-14.7559 -14.8427 -14.7301 -14.7034 a -
-14.7559 -14.8427 -14.5254 ° -14.5837 -1 0

-14.4740 -14.5336 -14.5254 -14.5739 .,_-1 2

-14.4740 -14.5336 -14.4463 -14.4865 -1 4

-11.7624 -14.1793 -11.3085 -11.2078 - 1 6-18 _ _

-5.5713 0.0000 -4.7495 -4.5900 L r X K r
-0.8335 0.0000 -2.2093 -3.3631

-0.8335 0.0000 -2.2093 -1.7848 FIG. 1. Calculated LDA-BZW band structure of zinc-blende Indium Nitride

4,0316 0.6536 4.1816 5.6110 (c-InN) at the theoretical equilibrium lattice constant of 5.017 A, as ob-

8.4339 9.7615 6.8978 7.1493 tained with BZW optimal basis set. The Fermi level (-0.216 87 eV) is set to
zero in the figure.

10.6892 9.7615 11.8922 10.5553
10.6892 9.7615 11.8922 11.6130

functions were expanded in terms of 13 Gaussian orbitals.
The minimal basis set comprised atomic orbitals representing

atomic orbitals (i.e., exponential, Gaussian, plane wave func- In1 + (ls2s2p3s3p3d4s4p4d5s5p) and N1- (ls2s2p). A mesh

tions) and with other features of the calculations (i.e., of 28k points in the irreducible Brillouin zone, with proper

pseudopotential, LAPW, etc). As described above, the BZW weights, was used in the self-consistent iterations. The com-
method is applicable in most computations that utilize the putational error for the valence charge was about

LCAO formalism. The LCAO program package we employed -0.001 449 79 for 36 electrons. The self-consistent poten-

in this work was developed many years3 1 3 3 before the intro- tials converged to a difference around i0. after about 60

duction of the BZW method in 1998. We provide below iterations.

computational details germane to a replication of our calcu-

lations. Il. RESULTS AND DISCUSSIONS
Zinc-blende InN is a member of the III-V family. The

atomic wave functions of the ionic states of In'+ and N1- Table I shows our calculated, theoretical equilibrium

were obtained from self-consistent ab initio calculations. The band gap of 0.65 eV, at a lattice constant of 5.017 A, and the

radial parts of the atomic w ave functions were expanded in value of 0.74 eV at an experimental lattice constant of

terms of Gaussian functions. A set of even-tempered Gauss- 4.98 A. Tables II and III contain the calculated energies, at
ian exponents was employed for In with a minimum of some high symmetry points in the Brillouin zone, for the two

0.1400 and a maximum of 0.2300)< 106, with 16 Gaussian lattice constants given above. Figures 1-3 exhibit the energy

functions for the s and p states and 14 for the d states of In1 +. bands, for the theoretical equilibrium lattice constant

The two largest exponents were not included in the descrip- (5.017 A), and the related total (DOS) and partial (pDOS)

tion of the d state. Similarly, a set of even-tempered Gauss- densities of states. The curve of the total energy versus the

ian exponents was utilized to describe N'-, with a minimum lattice constant is shown in Fig. 4.

of 0.1242 and a maximum of 0.1365 X 105. Both the s and p The lack of experimental data, except for the lattice con-

stant, precludes an extensive discussion of these results. Our

TABLE III. Eigenvalues (eV), along high symmetry points, for zinc-blende predicted equilibrium lattice constant is within 0.6% from
indium nitride (c-InN), as obtained from LDA-BZW calculation for a
=4.98 A. The Fermni energy -0.216 58 eV is set to zero the table. 10

L r X K _-- oa.bs

-15.5977 -14.8586 -15.7269 -15.6720 o 8aa
-14.7642 -14.8586 -14.7370 -14.7084 >:-2 0 2 4S~Energy (or)

-14.7642 -14.8586 -14.5160 -14.5781 d) "
-14.4583 -14.5212 -14.5160 -14.5685 .-
-14.4583 -14.5212 -14.4279 -14.4714 t 4

-11.7856 -14.3473 -11.3252 -1 1.20930
-5.7063 0.0000 -4.8350 -4.6807
-0.8675 0.0000 -2.2907 -3.4730 0 .
-0.8675 0.0000 -2.2907 -1.8515 -16 -12 -8 -4 0 4 8
4.1748 0.7383 4.2140 5.6870 Energy (eV)
8.5382 9.9148 7.1020 7.3237
10.8738 9.9148 12.1018 10.7467 FIG. 2. Total DOS for zinc-blende indium mtride (c-InN) as obtained with
10.8738 9.9148 12.1018 11.8177 the bands shown in Fig. 1. The inset illustrates our definition of a "practical

band gap."
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FIG. 4. Total energy of (c-InN) vs the lattice constant. The total energy at
FIG. 3. pDOS for zinc-blende indium nitride (c-InN) as obtained with the the equilibrium lattice constant of 5.017 A is 1949.4215 eV.
bands shown in Fig. 1. The dominance of nitrogen p at the top of the
valence band is obvious in this graph. As per their definition, effective masses provide a mea-

sure of the quality (i.e., curvature) of band structures. Our
the latest experimental one of 4.986 A. Our calculated bulk LDA-BZW calculations found electron effective masses, at
modulus of 145 GPa is close to the results from some other the bottom of the conduction band, of 0.065m0, 0.066m0 , and
LDA calculations °011 and disagrees with findings around 0.066m0 in the F-L, F-X, and F-K directions, respectively,
120 GPa from GGA calculation"'13 as shown in Table I. The for the equilibrium lattice constant. For a lattice constant of
tables for the calculated energies are expected to provide 4.98 A, the corresponding effective masses for the electrons
useful comparisons for future experimental investigations, are 0.076m0 , 0.073m., and 0.073mo in the F-L, F-X, and

Our calculated LDA-BZW band structure is drastically dif F-K directions, respectively. Our calculated, equilibrium,
ferent from the findings of most of the previous electron effective masses are very close to the 0.066m0 from
calculations-as far as the unoccupied bands are concerned, the EMP calculations of Fritsch, Schmidt, and Grundmann. 22

The large differences between our calculated band gaps and This agreement supports our comment above relative to the
previous LDA results in Table I are a direct consequence of potential use of EMP calculations when the potential param-
the differences between the respective unoccupied bands. eters are derived in part by fitting to LDA-BZW results.

The empirical pseudopotential (EMP) result of
0.592 eV is relatively close to our findings of 0.65 andZý IV. CONCLUSION
0.74 eV. We cannot draw much fundamental significance
from this fact, however, given that this EMP result was ob- In lieu of a conclusion, we contend that our ab initio,
tained using model potential parameters whose derivation self-consistent LDA-BZW calculations have predicted elec-
entailed fitting to data that included a band gap of 0.59 eV. tronic, structural, and elastic properties of cubic InN (c

For the purposes of application, however, this closeness por- -InN) in the zinc-blende structure. It is hoped that experi-
tends much importance. Indeed, we expect potential param- mental investigations will follow in the near future. It
eters derived from fitting to our data to lend themselves to emerges from this work that theoretical efforts should be
credible and practical descriptions of electronic, optical, elas- directed to the determination of actual limitations of LDA
tic, and structural properties of materials. This assertion is and of other approaches as opposed to echoing the chorus
partly supported by the versatility and relative ease of em- now known to be untenable, as per the physical interactions,
pirical pseudopotential calculations, and that ascribes to LDA a woeful underestimation of band

As in the Lase of w-InN,23 our results do not show any gaps that is, as per the Rayleigh theorem, straightforwardly a
indication of an overestimation of the p-d repulsion by LDA consequence of a basis set and variational effect.
potentials. This overestimation was believed' 0 to be the
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We report the calculated band gap of wurtzite indium nitride. Our ab initio computations employed
a local-density approximation (LDA) potential and the linear combination of Gaussian orbital
formalism. The implementation of the ab initio Bagayoko, Zhao, and Williams method [Phys. Rev.
B 60, 1563 (1999)] led. to a LDA band gap of 0.88 eV, in excellgnt agreement with recent
experiments. We also present calculated density of states (DOS) and the electron effective mass at
the bottom of the conduction band. Our DOS curves indicate that an experiment could find values
of the band gap up to 2 eV, depending on the sensitivity of the apparatus, the interpretation of
resulting data, and associated uncertainties. © 2005 American Institute of Physics.
[DOI: 10.1063/1.1939069]

BACKGROUND AND MOTIVATIONS was between 0.7 and 1.0 eV. The 2004 work of Arnaudov et

al. 17 on InN films grown by MBE or MOVPE gives a valueThe 1998 review articles of Orton and FoxonI and of
2 of 0.692+0.002 eV for the low-temperature (2 K) band gap

Ambachera extensively described the technological impor- of high-quality samples with relatively low electron concen-
tance and potential of group III-nitrides, including InN. The trations (i.e., 7.7 X 1017-6 X 1018 cm3 ). These authors em-

ternary alloy Int-xGaxN offers a wide range of band gaps lo ed 7.7 hotolunilnscence. The above ee-

that depend on X. Untilfrecently, the lower limit of this range Zy ym
was believed" 2 to be about 1.8-2.0 eV. This limit was the ment of recent experiments on values between 0.7 and
previously measured band gaps of wurtzite InN as obtained 1.0 eV, depending on temperature, pressure, and carrier con-

from the absorption studies of mostly polycrystalline films centration, is in stark contrast with the large range of the
grown by dc discharge, various sputtering techniques,4-8 or following theoretical findings.

metal-organic vapor-phase epitaxy (MOVPE). 9 The above Early empirical pseudopotential model calculations' 8 9

measured band gaps of wurtzite InN, i.e., 1.8-2.0 eV, are in (EPM) basically reproduced the gap of 2.0 eV reported by
disagreement with findings of recent experiments discussed the above first group of experiments. The fitting involved in
below, the method practically permits the reproduction of any se-

The 2000 study of the band bowing of InA1N by Yama- lected feature of the electronic structure. The 2003 EPM
1strongly indicated that the band gap (Eg) of work of Fiitsch et al.20 not only reproduced an earlier experi-glushi et al. srnl niatdta h an a E)o

wurtzite InN should be less than 1.9 eV. Subsequent mea- mental band gap of 2.11 eV, but also reported values of 2.58
surements of the band gap of InN films, mostly grown by and 2.59 eV, for wurtzite InN, from their anisotropic and
molecular-beam epitaxy (MBE), agreed on a range of isotropic pseudopotential calculations.
0.7-1.0 eV. The high quality of the samples in these experi- Local-density approximation (LDA) results for the band
ments was partly utilized to explain the large difference be- gap of wurtzite InN, including those of authors who also

tween the early3-9 and latter10-17 groups of experiments. In- performed quasiparticle ' and other calculations, range21-27

ishima et al.11 found the value of E8 to be 0.89 and 1.46 eV from -0.4 to 0.43 eV. The pseudopotential 22,24-26 (PP) and
for InN films at respective electron concentrations of 5 the full potential linearized augmented plane-wave21'23

× 10"9 and 2 X 1020 cm-3. The multipronged study by Wu et (FLAPW) calculations mostly reported negative values of
al.12 determined the band gap of w-InN by optical absorp- the band gap, from -0.4 to -0.19 eV. The full potential lin-
tion, photoluiinnescence, and photomodulated reflectance ear muffin-tin orbital23 (FP-LMTO) and atomic sphere ap-
techniques. The room-temperature band gap was found to be proximation (ASA) approaches led to values between 0.2
between 0.7 and 0.8 eV for their high-quality films that were and 0.43 eV.
grown by molecular-beam epitaxy. These authors further es- A pseudopotential calculation within the generalized gra-

25tablished that no noticeable feature could be found in the dient approximation25 (GGA) produced a band gap of
absorption and photomodulated reflectance spectra to indi- -0.37 eV. Several authors reported the band gap of wurtzite
cate a band gap between 1.9 and 2.0 eV. The band-gap bow- InN as obtained by quasiparticle 22' 25 (QP) or other computa-

ing of InGaN also pointed to a value of E. near 0.8 eV for tions that employed various schemes that either go beyond
wurtzite InN. Even though Matsuoka et al.i1 studied samples the local-density approximation2 224 28  or alter LDA
of wurtzite InN (w-InN) grown by metal-organic vapor- potentials.21' 27' 29 In particular, the pseudofunction 28 ap-
phase epitaxy, one of the growth methods of the early group proach, self-interaction correction (SIC), 22 and self-
of experiments, they found that E. for their w-InN samples interaction with relaxation corrections (SIRC),24 respectively,

led to band gaps of 1.3, 0.58, and 1.6 eV. The GW method
")Electronic mail: bagayoko@phys.subr.edu led to results 22'27 of 0.74 and 0.5 eV. The GW-SI produced a

0021-8979/2005/97(12)/123708/5/$22.50 97, 123708-1 © 2005 American Institute of Physics
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gap of 1.5 eV. The linear combination of Gaussian orbital sis set are generally not expected to describe the system cor-
(LCGO) calculations of Xu and Ching29 employed a LDA rectly. Indeed, they generally do not account for electron
potential plus additional exchange effects obtained with redistribution in the system as opposed to that in neutral
Wigner interpolation formula. They reported a band gap of atoms or ionic species. A second self-consistent calculation is

'1.02 eV. The LDA+C work of Wei et ai.7 augmented the performed with a basis set that includes the minimum basis
LDA potential with atom-dependent corrections and obtained set as augmented with the orbital representing the lowest
a band gap of 0.85 eV with an uncertainty of 0.1 eV. excited levels in the atomic (or ionic species). The occupied

Clearly, the above state of theoreticalt calculations is am- energy levels or bands of calculations I and II are compared.
ply sufficient to motivate the present work. A recent experi- One generally 'finds differences between these energies from
mental development exacerbated the urgency of our theo- the two calculations. For solids, these differences are in nu-
.retical investigations. Indeed, the concordant findings of the merical values and the branching and curvatures of the
second group of experiments, described above, have just bands. A third calculation is performed by augmenting the
been questioned by Shubina et al.30 in 2004. These authors basis set of calculation II as described above. If a comparison

showed the possibility of explaining the spectra of this sec-

ond group of experiments not in terms of near-band-edge of the self-consistent, occupied energies of calculations II
a i oand III do not show a complete agreement, within applicablea b so rp tio n o r e m issio n , b u t ra th er a s m a n ife statio n s o f er o s th p o c s of a g n i g t e b s s s t i s o t n u d

surface/gap states or Mie resonances due to In precipitates in errors, the process of augmenting the basis set is continued.
InN. They noted the poor thermal stability of InN and the Eventually, calculations N and (N+ 1) will have the same

low In vapor pressure to support their position. Specifically, occupied energies. Further, the charge density and the poten-

for high-quality InN films grown at T>500 'C by MBE or tial, from these two calculations, are, respectively, the

MOVPE, they utilized x-ray diffraction to observe tetragonal same.34' 35 Upon the convergence of the variational calcula-
In precipitates in hexagonal InN. Their very low-temperature tions with respect to the size of the basis, the results for
(0.35 K) measurements by thermally detected optical ab- calculation N are selected as the physical ones. One gener-
sorption (TDOA) indicate the possibility of having a band ally finds, indeed, that calculation (N+ 1) produced some un-
gap around 1L4 eV. The authors refrained from making a occupied energies that are lower than the corresponding ones
definitive statement as to the location of the fundamental in calculation N. These differences that vary vastly with the
band gap, despite their observations, due to the difficulties in value of k in reciprocal space are manifestations of the afore-
separating the intraband absorption in InN from Mie reso- mentioned basis set and variational effect.34-38 The basis set
nances. for calculation N is called the optimal basis set.

Other ordinary features of our calculations are thor-

METHOD AND COMPUTATIONAL DETAILS oughly described in the literature in seminal papers that re-
ported on the development 39-41 of the program package and

Our calculations employed the Ceperley and Alder31  its recent utilization. 34' 35' 38 We provide below computational
local-density-functional potential as parametrized by Perdew details germane to a replication of our ab initio work. The

32.C 3 -eprtr utieltieprmtrand Zunger in an ab initio LCGO formalism. We also em- experimental, low-temperature wurtzite lattice parameters
ployed the GGA potential of Perdew and co-workers33 which utilized in our work are a=3.544 A, c=5.718 A, and u
goes beyond LDA. The calculations are nonrelativistic and =0.3790. Preliminary calculations for the neutral In and N
for zero temperature. A key distinction betwveen this work atoms and the solid w-InN indicated that the self-consistent
and previous calculations resides in our utilization of the ab system is approximately In°'8+N°-8-. Consequently,
initio Bagayoko, Zhao, and Williams3 4'3 5 (BZW) method in we performed self-consistent calculations for Int+ and Nl-
carrying out the self-consistent computations. Introduced34 in
carryin out tenself-conent5-38 coepeatio , to obtain the input, "atomic" orbitals. The minimal basis
1998 and extensively employed thereafter, this method set comprised atomic orbitals representing Ini+
rigorously avoids a basis set and variational effect inherently (ls2s2p3s3p3d4s4p4d0s~p) and N'- (l's2s2p). We em-

associated with all variational calculations that utilize both lo ed even-tem ered Gaussan f ios i e t i
the iner cmbiatin o atoic rbial LCA) ad a ployed even-tempered Gaussian functions in the constructionthe linear combination of atomic orbital (LCAO) and a '

charge density obtained only with the wave functions of the of the atomic orbitals. The s and p orbitals of In were de-

occupied states. The effect, a consequence of the Rayleigh scribed with 16 even-tempered Gaussian functions with the

theorem, consists of a lowering of unoccupied energy levels respective minimum and maximum exponents of 0.14 and
or bands, which is not ascribable to a physical interaction, 0.2300>× 106. The d orbitals for In entail 14 even-tempered
after the total convergence of the charge density, the poten- Gaussian, the same as for the ones s and p at the exclusion of

tial, and of the occupied energy levels with respect to the size the two largest exponents. Similarly, the s and p orbitals of N
of the basis set.3 4'35  were constructed using 13 even-tempered Gaussian expo-

BZW self-consistent calculations begin wi.th the mini- nents whose smallest and largest values were 0.124 215 and

mum basis set, i.e., one that is just large enough to include all 0.136 000 5 X 105. The computations were generally, coin-
the orbitals for the occupied levels in the atomic species that pletely self-consistent after 60 iterations. The convergence,
are present in the system under study. This initial basis set, in for a given self-consistent calculation, was reached when the
our case, is derived from calculations for the atomic or ionic potential did not change by more than 10-5 from one itera-
species present in the finite or infinite system under investi- tion to the next. Upon reaching self-consistency, the error
gation. Completely self-consistent calculations with this ba- made in accounting for 72 electrons was 0.004 31.
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FIG. 1. LDA-BZW band structure of wurtzite indium nitride (InN). Lattice gy (eV)

constants: a=3.544 A, c=5.718 A, and u=0.3790. The solid lines represent FIG. 3. Partial density of states (pDOS) for wurtzite InN as obtained from
the band as obtained with the optimal basis set. The dotted lines show an the bands (solid lines) shown in Fig. 1. The dominance of nitrogen p at the
example of bands resulting from calculations with basis sets larger than the top of the valence band is obvious in this graph.
optimal one. The Fermi level is set to zero. The occupied energies are the
same in the two calculations.

tride is 0.88 eV. The GGA-BZW gap is 0.81 eV. These val-

RESULTS ues agree very well with the second and recent group of
experiments described above.

Our results for the energy bands, the total (DOS), and Bagayoko et al.42 predicted the LDA band gaps of 0.65

the partial densities of states (pDOS) are, respectively, shown and 0.74 eV for InN in the zinc-blende structure (c-InN), for
in Figs. 1-3. The LDA-BZW bands are very similar to the the theoretical equilibrium (5.017 A), and a low-temperature
ones obtained with GGA-BZW. The salient difference be- experimental (4.98 A) lattice constants, respectively. These
tween these results and the findings of previous calculations values are approximately 0.2 eV smaller than the above find-
resides in the description of the unoccupied bands. Indeed, ings for wurtzite InN. Since the publication of these
these bands, as clearly explained above in relation to the predictions,42 we have come across the recent experimental
Rayleigh theorem and the BZW method, do not suffer from findings43 that somewhat agree with them, within the limita-
the extra lowering ascribed to the basis set and variational tions associated with a high density of defects in the cubic
effect elucidated by Bagayoko and co-workers. 34-38 It is ira- layer, hexagonal inclusions up to 30% to the surface, and a
portant to note that the referenced lowering of some unoccu- very high carrier concentration above 1019 cm-3. Indeed, Ci-
pied bands is far from being rigid, i.e., it is highly dependent malla et al. reported,43 within the preceding limitations, the
on the k point and is greatest for free-electronlike band (para- results of optical investigations that indicated an absorption
bolic or not) and minimum for flat ones and at high symme- edge below 0.6 eV. The authors43 recommended confirma-
try points. Table I provides the energies at high symmetry tion of this indication with a high-quality cubic InN.
points in the Brillouin zone. It is hoped that these data will Our group34'35 introduced the concept of "practical band
lend themselves to further comparison of our results with gap." Essentially, the practical band gap designates a range
experimental findings, including optical transition energies. of values of the band gap, as per the inset of the total
The LDA-BZW calculated band gap of wurtzite indium ni- density-of-state (DOS) curve, such that an experimental mea-

surement could produce results anywhere in that range, de-
pending on the sensitivity of the apparatus and techniques,

10 othe fitting and interpretations of these results, and related

0o .5 uncertainties. Clearly, the inset in Fig. 2 shows that measure-
8 • (N) ments, particularly optical absorptions, could lead to values

-.00 of the band-gap ranging from the theoretical minimum of
Energy (eV 0.88 to 2 eV. We certainly contend that the provided defects,

a iimpurities, and other factors (i.e., electron concentration) do

, 4 . not explain the relatively large band gap of w-InN as found

by the first group of experiments, then the above concept of
practical band gap does. Unlike the three-pronged approach
of Wu et a. •4 using highly sensitive techniques, optical

-16 -12 -8 -4 0 4 8 absorption was generally the lone approach utilized in the
"Energy (eV) early determinations of the band gap of w-InN. Even the

2004 results of Shubina et al.,° as mentioned earlier, are
FIG. 2. Total density of states (DOS) for wurtzite indium nitride (InN) as subjest o s eta l. 30 asentio rs earlier

obtained with the bands (solid lines) shown in Fig. 1. The inset supports dur subject to this interpretation. Indeed, these authors identified
definition of a "practical band gap." a kink to denote the position of the band edge even though
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TABLE I. Eigenvalues (eV), at some high symmetry points, for wurtzite indium nitride (w-InN) as obtained
from LDA-BZW calculations for a=3.544 A, c=5.718 A, and u=0.3790. The Fermi energy of -0.222 12 eV is
set to zero in the table.

A L ,. M H K P

-13.0972 -11.5668 -11.2329 -11.3021 -11.2827 -11.6988

-3.25532 -5.25538 -5.20231 -4.89999 -4.32501 -5.61294
-3.25532 -5.25538 -4.27059 -4.89999 -4.32501 -0.89662
-0.46069 -1.62671 -3.34893 -3.14349 -4.2695 -0.89662
-0.46069 -1.62671 -2.29475 -3.34349 - -2.39761 -0.0049

-0.46069 -1.53365 -1.75651 -1.23894 -2.39761 0

-0.46069 -1.53365 -0.8656 -1.23894 -2.14019 0
3.366891 4.570732 4.748424 6.125875 6.740313 0.878663

3.367163 4.570732 6.175673 6.125875 6.740313 3.662409

the absorption, as per their Fig. 2(c) visibly commenced they clearly show that the extra lowering of the bottom of the
around 0.9 eV and reached a plateau at 2 eV, in accordance conduction band, on account of the Rayleigh theorem,
with our concept of practical band gap. straightforwardly leads to the band-gap problem in LDA and

The LDA-BZW effective masses for the electron close to other variational calculations that employ a basis set. This
the bottom of the lowest conduction band at gamma show a work partly responds to the calls by Ghani et al.44 and by
slight anisotropy. The electron effective mass is around Vurgaftman and Meyer45 for revisiting the issue of the band
0.088mno in the plane perpendicular to k, (from r to M and F gap of w-InN following their extensive compilations of ex-
to K) and 0.082m0, in the direction of k, (from F to A), in the perimental and theoretical results on indium nitride. Ghani et
immediate vicinity of the gamma (F) point. The GGA-BZW al. discussed the formation of oxynitrides (InON), particu-
calculations led to values of the electron effective mass very larly in aged or annealed polycrystalline samples, as a pos-
similar to the ones for LDA. Specifically, at the bottom of the sible source for the increase of the band gap to values around
lowest conduction band, they are 0.081, 0.077, and 0.082m, 2 eV. These polycrystalline films are reported to be suscep-
from F to M, F to K, and F to A directions, respectively. tible to containing a high density of oxygen atoms at their
These effective masses are also in agreement with grain boundaries.
experiment,14 taking into account the quality and other fea-
tures of the samples (i.e.,. temperature, pressure, electron
concentrations). Wu et al.1-4 obtained a value of 0.07 by using
a band gap of 0.7 eV in their analysis. They also provided a CONCLUSION
plot of the electron effective mass as a function of electron
concentration. In conclusion, we claim to have resolved the controversy

surrounding the band gap of wurtzite InN. We did so within

DISCUSSIONS the local-density approximation (LDA) with the BZW
method. Unlike many schemes purporting to correct limita-

For a discussion of our results, we underscore the need tions of local-density approximation and that come with
for specificity relative to the lattice parameters, sample other approximations whose effects are at best ill understood,30 11 12

quality and growth conditions, temperature, and electron the ab initio BZW method is rigorously anchored on a math-
concentration 11 when comparing results from different ex- ematical theorem. The above points explain the reason this
perimental i.nyestigations. In particular, the significant effect communication is hoped to end the echoing of the incorrect
of electron concentration on the band gap 1'44-46 could ex- chorus claiming that it is well known that local-density ap-
plain the 0.75-0.8-eV band gap found by Wu et al.12 whose proximation woefully underestimates the band gap of semi-
samples had a relatively low electron concentration of 5 conductors and insulators. In the above sense, and even
X 1018 cm-3. Our calculated band gap of 0.88 eV agrees very though this communication is devoted to wurtzite InN, the
well with the experimental result of 0.89 ev of Inishima et method applies to other calculations that employ basis sets in
al.11 for a sample with an electron concentration of 5 a variational scheme of the Rayleigh-Ritz type, as is the case
X 1019 cm-3. As noted above in connection with the "practi- in many energy level (finite systems) or band calculations.
cal band-gap," measurement techniques, the analysis of data, An utterly important point associated with the above points
and related uncertainties are critical. Specifically, we reiter- stems from the fact that the proliferation of schemes aimed at
ate that absorption techniques could lead to a value of the "correcting" limitations of LDA has started to look like that
band gap of vi-InN as large as 2 eV. of epicycles in -the Ptolemaic model of the solar system. A

Some authors22 evoked a p-d repulsion to explain the seriously unfortunate consequence of this situation consists
small (generally negative) band gap from previous LDA cal- of diverting efforts from grasping the actual capabilities and
culations. LDA is reported to overestimate this repulsion and limitations of LDA and those of schemes aimed at going
to push upward the top of the valence band. Our results beyond the local-density approximation or beyond density-
provide no indication of such a limitation of LDA. Rather, functional theory altogether.
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Abstract

In this work, we reexamined some of the mathematical and phys-
ical properties of the ab-initio LCAO calculations for the electronic
structure of ZnSe, Ge, and GaAs. The utilization of non-strongly min-
imal systems in the self-consistent ab-initio calculations could lead to
a non-uniformity in approaching the solution in the Ritz-process. We
performed test computations for the electronic structure of hydrogen
atom. We have proposed that an optimum basis set may be needed
so that the calculated electron density is converged and the significant
scattering of the Ritz-coefficients may be avoided. We have applied
the new method to the calculations of the electronic structure of ZnSe,
Ge, and GaAs. Our calculated results of the electronic properties agree
well with experimental data.

1 Introduction

Ab-initio density functional calculation is a very powerful tool to study the
physical properties of materials, including semiconductors, metals, surfaces,
interfaces, and others.[1, 2, 3, 4, 5, 6, 7] However, previous density functional
calculations in local density approximation (LDA) for semiconductors or in-
sulators often underestimated the band-gaps by 30-50 %.[8, 9, 10, 11] Closely
related to the band-gap problem, the calculated effective masses of electrons
(n-type carriers) and the optical properties of semiconductors -from previ-
ous LDA computations- also disagree with experimental results. There have
been some theoretical efforts intended to address these problems, including
the calculations that utilize nonlocal, energy-dependent, non-Hermitian self-
energy operators.[12, 13, 14, 15, 16, 17, 18] Others implemented the exact
exchange potentials or included the effects of core states via the exchange
diagram. [19,, 20, 21] Aryasetiawan and Gunnarsson reviewed several compu-
tational methods, including the GW method, aimed at describing excited
state properties.[17]. Johnson and Ashcroft recently utilized simplified ap-
plications of the GW method to make scissors-type corrections to the band
gaps of semiconductors. [18]



In this work, we reexamine some of the mathematical properties of the
self-consistent ab-initio density functional calculations that utilize the lin-
ear combination of atomic orbital (LCAO) formalism. We discuss the Ritz-
process of the variational calculation that was implemented in the LCAO
calculations and the related mathematical theorem. The identified mathe-
matical properties of the Ritz-process, which is the foundation of the LCAO
calculations, may be indispensable for understanding the band-gap and re-
lated problems for semiconductors. We performed test computations for the
electronic structure of hydrogen atom. We will illustrate some of the mathe-
matical and physical properties of the self-consistent ab-initio calculations of
the Ritz-process by the results of the calculations on hydrogen atom, ZnSe,
Ge, and GaAs.

In the next section, we summarize the computational method and the re-
lated mathematical properties. We present the calculated results in Section
III, followed by a short conclusion in Section IV.

2 Method

2.1 The Kohn-Sham Equation and The Ritz Process in the
LCAO Calculations

Our calculations of the electronic structure of materials are based on the
density functional theory of Hohenberg-Kohn and Kohn-Sham.[1, 2] The
Schr6dinger-like equation, which is also known as the Kohn-Sham equation,
of many electron system [1, 2, 3] is

h2 e2Zm 2 f __(I 1
{- V2 - Z -- - + dv' + V ,c}'Ii = EjIF ki (1)

where Eki and Tki are the eigen-energy and eigen-function of the i-th elec-

tronic state at the k-point in the Brillouin zone; 7m and Zm are the posi-
tion and nuclear charge of the m-th ion; RI is a translational vector; V',
is the exchange-correlation potential of the many-electron system. In this
work, we employed a non-local density functional formalism of the exchange-
correlation potentials in the generalized gradient approximation (GGA) that
was developed by Perdew and Wang.[22] In fact, the Kohn-Sham equation
is a non-linear differential equation, since the electron density p(r-) depends
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on the wave functions Tki of the occupied electron states, i. e.,

W1 E &f ITk 1j2  (2)

where & is the Fermi distribution function. The solution of the Kohn-Sham
equation has to satisfy a condition that

J p(rldv = N (3)

where N is the total number of electrons in the system. In this work, we im-
plemented the formalism of the linear combination of atomic orbitals method
to solve the Kohn-Sham equation. The essentials of the mathematical prop-
erties of the calculations are those of the Ritz-process of the variational cal-
culations. We will follow the notations in the discussion of the variational
theory according to S. G. Mikhlin[23].

In the LCAO method,[24, 25, 26, 27, 28, 29, 30, 31, 32] we solve the
Kohn-Sham equation self-consistly. We expand the eigenfunction T& of the
effective single electron state of the many-atom system as a linear combina-
tion of the atomic wave functions, which is a Ritz process as termed in the
variational theory according to Mikhlin's notations.23]

T&i~-) Cam (fd) -m (fkr--) (4)

akm

where Cam are the expansion coefficient or the Ritz-coefficients; am(k, j
are Bloch wave functions which are expressed in terms of atomic wave func-
tions as

(k rm -E () (5)

where Uem is the atomic wave function of the a-th state of the m-th atom
at the position &m and is the coordinate element in the energy space (or
Hilbert space). The solution for the Ritz-coefficients Cam of the Kohn-
Sham equation is the one that the total energy functional Etotat (p) reaches
its minimum.

2.2 The Requirement of Strongly Minimal Systems in the
Ritz Process

We shall study the countable system of the coordinate elements in the
Hilbert space, where

{Un}' Ul,U2,U3,...,Un,... (6)
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The corresponding Gramm matrix of the first n-elements of {Un} is

(U ,U ) (2 2 ... (U , n
R,. (7)

(, I U 2 ... (n n

where (ui, uj) can be an overlap matrix element in the LCAO formalism.
The eigen-values of the Gramm matrix can be written in increasing order as

I_ (8)

The system (Eq. (6)) is called strongly minimal in the energy space (Hilber
space), if

infA•A limn-Al > 0 (9)

A relevant mathematical theorem for the Ritz-process in the variational
calculation is the following: In order for a Ritz-process to be stable, it is
necessary and sufficient that its generating coordinate system {ui} be strongly
minimal in the corresponding energy space.[23]

In the LCAO calculations, the coordinate system, which is the basis set of
the atomic orbitals, is not strongly minimal as required in the mathematical
theorem. The problem is more obvious in some cases of the implementations
of the basis sets such as 6-311G, 6-31G, or 5-31G. In those cases, some of
the shell functions that describe the atomic states are not orthogonalized
even on a single atomic site. In the solid state calculations, the smallest
eigen-value of the overlap matrix could be negative in those calculations.
As experienced by various researchers, the numerical instability problems
could occur, which are usually referred as "linear dependency" problems.

In our implementations of the LCAO method, the atomic wave functions
(or atomic orbitals) are obtained from ab-initio atomic computations. The
atomic shell functions are orthogonal in the cases of free atoms or ions.
However, the basis sets (or coordinate systems) of the atomic orbitals for the
solid state calculations are neither orthogonal nor strongly minimal as that
required by the above mentioned mathematical theorem. The problem is
more intricate since we may notice the computational instabilities in the case
that the problem becomes very severe, but we may not readily appreciate the
beginning of the appearance of the computational instabilities. Particularly,

4



the onset of the computational instabilities in the LCAO method may not be
marked by an occurrence of the negative eigen-value of the overlap matrix.

Mikhlin illustrated the problems of the utilization of non-strongly min-
imal systems in Ref. [23] by several examples. Generally, the non-strongly
minimal systems will not reach a soluiion in the limit of n -4 oo in the
Ritz-process. For finite values of n, some of the non-strongly minimal sys-
tems may approximate the Ritz-coefficients with a tendency to stabilize
non-uniformly for increasing n. Other non-strongly minimal systems may
show that the Ritz-coefficients scatter significantly. The coefficients may
change abruptly from one approximation to the next. One may not know
the exact solution for the problem and has the difficulty of identifying an
estimate for the error in the approximate solutions. There is so far no math-
ematical theorem that can identify exactly the properties of the instabilities
in the utilization of non-strongly minimal systems in the Ritz-process. The
relevant problems may include those such as the condition(s) that the in-
stabilities may occur, the behavior of the instabilities, and the method(s) to
identify them.

The problems became more complex in the applications of the numerical
computations of the electronic structure of solid state materials, since most
of the basis sets of various implementations of ab-initio density functional
calculations are not strongly minimal. The true plane-wave basis set sat-
isfies the condition to be strongly minimal. However, the requirement of
the computational accuracy and the number of the true plane-waves in the
solid state calculations are usually beyond the limitation of our computer
resource at present. The orthogonalized plane waves, which are derived by
the Schmitdt process to be orthogonal to the core wave functions, are not
strongly minimal.

One may propose to orthogonalize the atomic orbitals for the solid state
calculations. However, if the basis set is not strongly minimal, the orthog-
onalization of the basis set in solid state calculations may encounter the
similar instability problem. The orthogonalization procedure of the basis
set involves the computation of the inverse of the overlap matrix. If the
smallest eigen-value of the overlap matrix approaches zero or negative, an
instability problem may occur.

2.3 Consideration of Some Physical Properties

Although the true plane-wave basis set can be implemented in ab-initio
density functional calculations of the electronic structure of solid state ma-
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terials, the LCAO method is a much more efficient method in solving the
Kohn-Sham equation of many-atom systems. The utilization of non-strongly
minimal systems (or basis sets) such as those used in LCAO calculations
could lead to either a divergent solution as n -- o, or could approach their
solutions non-uniformly. The non-uniformity in approaching the solutions
of the Ritz-process or the scattering of the Ritz-coefficients are particularly
severe when the sizes of the basis sets become relatively large. This can be
seen in the examples demonstrated by Mikhlin and were observed in pre-
vious ab-initio electronic structure calculations utilizing the LCAO method
on various materials.[23, 30, 31]

In the cases that the ab-initio LCAO calculations or other similar ones
are needed, we may utilize the considerations of some physical properties
of the solid state materials in identifying approximate solutions without
serious errors. One of the plausible hypotheses may be the following: If the
exact solutions of the atomic wave functions for the atoms in the solid state
are known, the required size n of the basis set is then determined by these
atomic wave functions. There will be no need for any additional atomic
orbitals (or atomic wave functions) in the corresponding energy space of
the exact solution. However, we may not know the exact solutions of the
atomic wave functions in the solid state in the practical calculations and may
have to use an augmented basis set of atomic orbitals. We will address this
problem in more detail in the next section when we present the calculation
results. The difficulty may be lessened if a global self-consistent approach
is implemented. We first calculate the atomic wave functions of free atoms
in a neutral state. We use these atomic wave functions as the basis set to
start the ab-initio calculation of the electronic structure of the solid. We
then utilize the electronic structure of the solid state to estimate the charge
transfer among the constituent atoms. The information is consequently
utilized to identify the corresponding ionic state for a further refinement of
the calculations. The global self-consistent procedure continues until the
solutions converge.

3 Results

3.1 Test Calculations on Hydrogen Atom

In the calculations of the electronic structure of ZnSe, Ge, and GaAs, we
implemented self-consistent ab-initio density functional computations that
utilize the linear combination of atomic orbital formalism. To obtain the
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atomic wave functions, we performed ab-initio atomic calculations that also
utilized density functional formalism. The radial parts of the atomic wave
functions were expanded in terms of a linear combination of Gaussian or-
bitals (LCGO).

The'electronic energy levels and related wave functions of hydrogen atom
are exactly known from the analytical solution of the Schrbdinger wave equa-
tion. We can test the numerical performance of the variational computations
of the Ritz-process on hydrogen atom. We utilized the same ab-initio atomic
computation program and the LCGO formalism to calculate the electronic
structure of hydrogen atom. The Schrbdinger wave equation for the calcula-
tion of the electronic structure of hydrogen atom is a one-electron problem,
instead of the many-body problems such as those for the studies of solid
state materials. In the ab-initio computation of the hydrogen atom using
the LCGO method, we did not include the density functional potentials
in the Hamiltonian. The Schr6dinger wave equation for hydrogen atom is
then a linear differential equation, instead of the non-linear differential equa-
tion such as the density functional Kohn-Sham equation. We compared the
results of the numerical computations of hydrogen atom with the exact solu-
tion. In the numerical-computations, we utilized basis sets of even-tempered
Gaussian exponentials with a minimum of 0.10 X 10-2 and a maximum of
0.15 x 104 in atomic unit. We used various sizes of the basis sets of the
Gaussian functions.

In Fig. 1, we present the calculated electronic energy levels of hydrogen
atom versus the total numbers of the utilized Gaussian functions (Gaussian
orbitals). The solid, dotted, and dash-dotted lines in Fig. 1 present the
calculated energy levels of s-, p-, and d-states of hydrogen atom, respectively.
As the numbers of the Gaussian functions in the basis sets increase from 5
to 15, the calculated energy levels approach their converged values. The
calculated first three energy levels of hydrogen atom converged to -1.0, -
0.250, and -0.111 Ry, when we utilized 15 - 60 Gaussian functions in the
basis sets. These calculated energy levels of hydrogen atom agree very well
with that of the exact solution for the principal quantum number n = 1, 2,
and 3, respectively. The lowest energy level in Fig. 1 belongs to the Is state
of H atom. The second lowest level includes 2s and 2p states. The third one
includes 3s, 3p, and 3d states.

When the numbers of the utilized Gaussian functions in the basis sets
are larger than about 70, the calculated electron energy levels of the 3p and
3d states of hydrogen atom dropped to lower values than those of the exact
solution. The features illustrate the instabilities of the variational calcu-
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lations of the Ritz-process. Fig. 1 also shows that the numerical property
of the instability in the computations of the 3d states of hydrogen atom is
different from that of the 3p state. The calculated energy level of the 3d
state of hydrogen atom dropped rapidly when the numbers of the utilized
Gaussian functions in the basis sets are larger than about 70. The calcu-
lated energy level of the 3p state decreases much slowly, as compared with
that of the 3d state in the same computations. The calculated energy level
of 3s state remained the same as that of the exact solution in these test
computations.

3.2 Electronic Properties of ZnSe

Zinc selenide (ZnSe) is a member of the II-VI family. Its crystal structure
belongs to the space group of T2. In these calculations, we used a lattice
constant of a = 5.65A.[33, 34, 39] The formation of the Zn-Se bond has a
partial ionic character in addition to its covalent bond. We first calculated
the atomic wave functions of Zn0 and Se°. We utilized these atomic wave
functions as the basis set to perform the ab-initio calculation of the electronic
structure of ZnSe. The charge transfer in ZnSe was estimated from the
calculated electronic wave functions. A Zn atom loses about 1.1 electrons to
a Se atom. We then calculated the atomic wave functions of the ionic states
of Znl+ and Se 1-, utilizing self-consistent ab-initio atomic calculations. The
radial parts of the atomic wave functions were expanded in terms of Gaussian
functions. A set of even-tempered Gaussian exponentials was employed with
a minimum of 0.15 and a maximum of 1.770 x 105. We used 18 Gaussian
functions for the s and p states and 15 for the d states of Zn. We utilized 19
Gaussian functions for the s and p states and 17 for the d states of Se. In the
self-consistent ab-initio calculations for the electronic structure of the solid
state ZnSe, we included a mesh of 28 k-points, with proper weights in the
irreducible Brillouin zone. We took the Is, 2s, and 2p states of Zn and Se as
the core states in the frozen core approximation, and allowed all other states
to relax in the self-consistent ab-initio calculations. The computational error
for the charge density was about 0.0023 for 44 electrons. The self-consistent
potentials converged to a difference around 10-5 after about 60 iterations.
The total number of iterations varies with the input potentials.

We performed five distinct 'calculations in order to determine the op-
timal basis set for the calculation of the electronic structure of ZnSe, uti-
lizing the procedure as discussed in the above section and in the previous
publications.430, 31] Table 1 illustrates the atomic orbitals of the basis sets
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of the five self-consistent calculations. We first carried out completely self-
consistent calculations for ZnSe using a basis set that included Zn(ls2s3s4s
2p3p 3d) and Se(ls2s3s4s 2p3p4p 3d) orbitals. We then repeated the self-
consistent calculation using the above basis set as augmented by the orbitals

describing the next lowest-lying energy level of Zinc. Hence, Zn(4p) orbitals
were added to basis set I. We then plotted the energy bands from these
two distinct calculations, i.e., calculation I and II, and compared them nu-
merically and graphically. Differences were obvious. We then performed

calculation III and compared its results to those of calculation II. Up to five

self-consistent calculations were performed and the results of each calcula-
tion were compared to those of the previous one as explained above.

In Fig. 2, we presnt the calculated electron energy bands of ZnSe from
calculation III (solid lines) and calculation IV (dashed lines). Here r =
(0,0,0); L = (1, 1, 1)w/a; X = (0, 1,0)2w/a; K= (3/4, 3/4, 0)21r/a.[35] The
zero of the energy was set at the top of the valence bands. The calculated

energies of the occupied valence bands and the unoccupied conduction bands
converged to an average difference of several meV. The fourth calculation

(the dashed line) of Fig. 2 gives sufficiently converged electron energy bands
of ZnSe with respect to the size of the basis set. As we present in the follow-
ing sections, the calculated electronic properties of ZnSe from calculation
IV agree well with experimental data.

However, as we added more atomic orbitals in the calculations, the cal-
culated electron energy bands of ZnSe drifted away from the converged re-
sults of calculation IV around the F-point. One may observe a computa-
tional behavior that is similar to that of the calculations for hydrogen atom.
Fig. 3 shows the comparison of results from calculation IV (solid lines) and

from calculation V (dashed lines). The calculated occupied energy levels

converged with respect to the size of the basis set. However, some of the
calculated unoccupied energy levels become lower than those of the calcu-
lation IV, as more atomic orbitals are added in the calculations. Different

from the case of hydrogen atom, there was no an exact solution for the
electronic structure of ZnSe as a reference. Various physical interpretations
were devised to explain the numerical performance of the Ritz-process in
the calculations. Some of them were believed to contribute in various as-

pects to the problem. In fact, the problem was previously claimed as the
failure of density functional theory or the failure of local density functional

calculations in many occasions. Part of the support for this claim was due
to the fact that the calculated conduction band energies (or the band-gap
energies) of semiconductors utilizing various computational methods often
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were much lower than that of experimental results.
In spite of the fact that the mathematical properties of different compu-

tational methods are different, it can be proved that the basis sets used in
those of the previous ab-initio calculations did not satisfy the requirement
of the strongly minimal systems. Those include all-electron LAPW cal-
culations, LMTO calculations, pseudopotentials orthogonalized plane wave
methods, and ab-initio Gaussian orbitals or LCAO calculations. Briggs et
al used multi-grid accelerations and a real-space grid as a basis in their cal-
culations of the electronic structure of elongated diamond cell, an isolated
C60 molecule, and a 32-atom cell of GaN.[36] As Briggs et al discussed in
their article, the real-space grid implementation can also introduce a spu-
rious dependence of the Kohn-Sham eigen-values, the total energy, and the
ionic forces on the positions of the ions with respect to the real-space grid.

Nevertheless, the mathematical and physical properties of the ab-initio
electronic structure calculations should be carefully examined. As we pre-
sented in the previous sections, the utilization of the non-strongly minimal
systems of the basis sets also play a role for the problem. In principle, an
exact solution cannot be reached as the size n of the basis set goes to infin-
ity. The Ritz-coefficients may scatter significantly from one approximation
to the next as n becomes large. However, the calculation of the occupied
states has t6 satisfy the restriction of Eq. (3) which may restrict the scatter-
ing of the Ritz-coefficients of these states. The calculation of the unoccupied
states do not have the restriction and the problem of the scattering of the
Ritz-coefficients is particularly severe when the sizes of the basis sets be-
come relatively large. We have proposed that an optimum basis set may be
needed so that (a) the calculated electron density is converged, and (b) the
significant scattering of the Ritz-coefficients is avoided. In the calculation
of the electronic structure of ZnSe, we selected the basis set IV as the opti-
mal one that lead to the converged electron density and related properties.
The calculated electron energy bands are illustrated by the dashed line of
Fig. 2 or by the solid lines of Fig. 3. One may observe that the calculated
energy bands of the larger basis set (Calculation V in Fig. 3) are usually
lower or unchanged as compared to those of the smaller basis set (Calcu-
lation IV in Fig. 3). This property can be understood from the Rayleigh
theorem.[41, 42, 30, 31]

As shown in Fig. 2 and Fig. 3, ZnSe is a direct band gap semiconductor
with the smallest gap energy of 2.6 eV at the center of the Brillouin zone
(r). Our calculated band-gap energy is in good agreement with experimental
measurements of about 2.8 eV.[34, 37, 38, 39] We present the total density
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of states (DOS) of ZnSe in Fig. 4, as obtained from calculation IV. The
total DOS curve in Fig. 4, particularly the inset, indicates that the small
values of the density of states from 2.6 eV to 2.9 eV strongly suggest that
measurements or related analysis that are not very sensitive may iot detect
the smallest energy gap.

Our calculated effective mass of n-type carriers, mra, near the P-point is
0.15 mg, where m0 is the free-electron mass. This result is in good agreement
with the experimental value of 0.16mo.[40, 39] The calculated effective mass
of n-type carriers, away from the F-point, is between 0.15mo and 0.17mO.

We also performed the self-consistent ab-initio calculations for the elec-
tronic structure of ZnSe, utilizing local density approximation for the exchange-
correlation potential. We compared the electron energy bands from the LDA
and GGA calculations. The average difference between the resulted bands
of the two calculations is of the order of 1 mRy.

3.3 Electronic Structure of Ge

We performed the self-consistent ab-initio calculations for the electronic
structure of crystalline Ge in the diamond structure. We used a zero, temper-
ature lattice constant of a 5.63A1 in these calculations.439] We tested the
convergency of the electronic structure calculation with respect to the size
of the basis sets of atomic orbitals. We calculated the atomic wave function
using a separate computer program that employed ab-initio density func-
tional computations for atoms. We expanded the atomic wave functions as
a linear combination of Gaussian orbitals (LCGO) in real space as discussed
in the previous section.

SIn the calculation of the electronic structure of Ge, we employed non-
local density functional potentials in the generalized gradient approximation
that was developed by Perdew and Wang.[22] We first carried out com-
pletely self-consistent calculations for crystalline Ge using a basis set that
included atomic orbitals of Ge(ls2s3s4s 2p3p4p 3d). We then repeated the
self-consistent calculation using an augmented basis set that also included
the orbital of Ge(4d°). In the self-consistent calculations of the electronic
structure of solid Ge, we considered Ge(ls2s 2p) as the core states. All other
states were treated as valence states and were allowed to relax in the self-
consistent 'calculations. We then plotted the resulting energy bands from
these two distinct self-consistent calculations. We observed that the occu-
pied and unoccupied bands from the two calculations differ considerably.

The next step was to repeat our procedure for the third, fourth, and
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fifth time. In these calculations, more atomic orbitals were added one at
a time. The results of the fourth calculation (solid lines) and of the fifth
calculation (dashed lines) are shown in Fig. 5, where the top of the valence
bands is set as the zero of the energy. The fourth calculation included the
atomic orbitals of Ge(fs2s3s4s5s0 2p3p4p5p° 3d4d°). The fifth calculation
included an additional atomic orbital of Ge(5d°). The calculated electron
energy bands from the fourth calculation do not have a noticeable difference
from that of the fifth calculation for a large energy range from -13 eV to
about 8 eV. The average difference between the occupied energy bands from
the two calculations in Fig. 5 is of the order of several meV. The fourth
calculation (the solid lines of Fig. 5) leads to sufficiently converged electron
energy bands of crystalline Ge with respect to the size of the basis set.

We present the calculated energies (eV) of the electronic states of Ge
at the selected high symmetry points in Table 2, along with some experi-
mentally measured results. "Deg" in Table 2 refers to the degeneracy of the
electronic states at that k-point. Our calculated results for the electronic
energies agree very well with experimental values. The calculated, highest
energy state of the valence bands is at the P-point. The lowest energy state
of the conduction band is at the L-point. The calculated, indirect band gap
is 0.62 eV, which agree well with experimental results of 0.66 - 0.74 eV.[39]
In these calculations, we did not include the relativistic effects such as the
spin-orbital interaction which will split the degenerate bands at the high
symmetry points.

We listed the calculated effective masses of n-type carriers (electrons)
in Table 3. Although the spin-orbital interaction only splits the electronic
energy levels by a relatively small amount (of the order of about 20 meV),
the curvature (dispersion) of the electron energy bands can change more
noticeably. The calculated effective masses of p-type carriers (holes), with-
out the consideration of the spin-orbital interaction in the calculations, can
have a relatively large error and are not included in the Table 3. The lowest
conduction band is not degenerate and the spin-orbital interaction may not
affect substantially the effective masses of n-type carriers in this band. Our
calculated effective masses of n-type carriers agree well with experimental
results.J39]

We also compared the electron energy bands of Ge from the LDA and
GGA calculations. The average difference between the energy bands, result-
ing from the two potentials, was approximately 1 mRy.
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3.4 Electronic Structure of GaAs

We also applied the same calculation procedure as discussed in the previ-
ous sections to the study of the electronic structure of GaAs in the zinc
blende structure. We used the experimental lattice constant of a = 5.65A'
in the calculations.[43, 44] We calculated the atomic wave functions of Ga
and As self-consistently. We evaluated the charge transfer in GaAs from the
self-consistent ab-initio calculations of the electronic structure. Ga atoms
in GaAs lose about 0.3 to 0.4 electrons per atom to As atoms. In the self-
consistent ab-initio calculations, we employed non-local density functional
potentials in the generalized gradient approximation. We used the Is, 2s,
and 2p states of Ga and As as the core states in the frozen core approxi-
mation, and allowed all other states to relax in the self-consistent ab-initio
calculations. In Fig. 6, we present the calculated electron energy bands
of GaAs along some high symmetry directions in the Brillouin zone. Here
F = (0,0,0); L = (1,1,1)7r/a; X = (0,1,0)27r/a; K = (3/4,3/4,0)27r/a.
The zero of the energy was set at the top of the valence bands. In Fig. 6,
the solid lines represent the calculated results using the atomic orbitals of
Ga(ls2s3s4s 2p3p4p 3d4d) and As(ls2s3s4s 2p3p4p_3d4d), where Ga(4d)
and As(4d) are the unoccupied atomic orbitals. The dashed lines represent
the calculated bands for the basis set that has an additional atomic orbital
of As(5s). The calculated electron energy bands of the occupied states of
GaAs from the two different calculations agree very well. The average dif-
ference of the energies of the occupied states from these two calculations is
about several meV.

GaAs has a direct band-gap at the P-point as shown in Fig. 6. The lowest
energy state of the conduction band is at the F-point. The lowest energy of
the conduction band at the L-point is higher than that at the P-point by 0.2
eV. This result agrees well with the experimental value of 0.2 to 0.3 eV.[44]
The theoretical band-gap energy of GaAs is 1.24 eV from this calculation.
The reported experimental values of the band-gap energy of GaAs is 1.4 to
1.5 eV.[43, 44, 45] As we discussed in the previous sections, we present below
the calculated electron density of states of GaAs in Fig. 7. There is a tail
structure near the conduction band edge. The small values of the density of
states from 1.24 eV to 1.7 eV strongly suggest that measurements or related
analyses that are not very sensitive may not detect the smallest energy gap.

We also calculated the effective mass m* of the electrons (n-type carriers)
in the lowest conduction band near the P-point. The effective mass m*
is calculated from the curvature of the band dispersions. The calculated
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effective mass of the electrons do not show much difference in the three
directions that include L -+ r, X -+ r, and K -+1 F. They are 0.067,
0.068, and 0.068 m0, respectively. The average value of the effective mass
of the electrons is m* = 0.068m0 , where m0 is the free electron mass. The
experimental value of the effective mass m* of the electrons is about 0.065 to
0.069 mo.[44] Our calculated results agree well with the experimental data.

We compared the electron energy bands of GaAs from the LDA and
GGA calculations. The average difference between the energy bands of the
LDA and GGA calculations is of the order of 1 mRy.

4 Conclusion

In this article, we reexamined some of the mathematical and physical prop-
erties of the ab-initio density functional calculations for the electronic struc-
ture of ZnSe, Ge, and GaAs. We also performed test computations for the
electronic structure of hydrogen atom. The utilizations of non-strongly min-
imal systems in the self-consistent ab-initio LCAO (or LCGO) calculations
could lead to the non-uniformity in approaching the solutions in the Ritz-
process. We are ndf aware a previous research article that fully addressed
these problems. We have utilized a global self-consistent approach to de-
termine the optimal basis sets for the calculation of the electronic structure
of ZnSe, Ge, and GaAs. Our calculated results of the electronic properties
agree well with experimental data.
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Table 1: The atomic orbitals in the basis sets of the five distinct calculations
for the electronic structure of ZnSe.

Basis Zn core Se core Zn valence Se valence
I ls2s 2p ls2s 2p 3s4s 3p 3d 3s4s 3p4p 3d
II ls2s 2p ls2s 2p 3s4s 3p4p 3d 3s4s 3p4p 3d
III Is2s 2p is2s 2p 3s4s 3p4p 3d 3s4s 3p4p 3d4d
IV ls2s 2p is2s 2p 3s4s 3p4p 3d4d 3s4s 3p4p 3d4d
V is2s 2p is2s 2p 3s4s 3p4p 3d4d 3s4s5s 3p4p 3d4d
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Table 2: Calculated electronic energies (eV) of Ge at the selected high sym-
metry points. The experimental data are from Reference [39, 44].

Ge Calculation Deg Measurements
Fri -12.59 1 -12.6, -12.9±0.2

rF25v 0.0 3 0.0
I2c 0.83 1 0.89

r15, 2.81 3 3.01
L2v -10.41 1 -10.6±0.5
Li, -7.44 1 -7.7±0.2
L3, -1.39 2 -1.4±0.3
Lie 0.62 1 0.74
L 3c 4.02 2 4.3±0.2, 4.2±0.1
L2C 8.29 1 7.8±0.6, 7.9±0.1
XiV -8.64 2 -9.3±0.2
X4V -3.00 2 -3.15±0.2, -3.5±0.2
Xi, 1.04 2 1.3±0.2
X3, 9.98 2
Eg 0.62 0.66, 0.74

Table 3: The effective masses (in mo) of the n-type carriers at the lowest
conduction band of Ge in the diamond structure.

calculation measurements
tni(0.086 0.0807[39]

M-11 (Lic) 1.43 1.57[39]

mnr 0.043 0.038[39]
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Figure 1: The calculated electronic energy levels of hydrogen atom versus
the total numbers of the utilized Gaussian functions. The solid, dotted, and
dash-dotted lines present the calculated energy levels of s-, p-, and d-states
of hydrogen atom, respectively.
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Figure 2: The calculated electronic energy bands of ZnSe along the high
symmetry directions. The solid and dashed lines represent the results of
calculations III and IV, respectively.
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Figure 3: The calculated electronic energy bands of ZnSe from Calculation
IV (solid lines) and Calculation V (dashed lines).
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Figure 4: The calculated density of states of ZnSe. The inset shows the tail
structure of the density of states of ZnSe near the bottom of the conduction
bands.
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Figure 5: The calculated electronic energy bands of Ge along the high sym-
metry directions. The solid and dashed lines represent the results of the
fourth and fifth calculations, respectively.

24



-2

10

-12

- 14

L r, X K F,

Figure 6: The calculated electron energy bands of GaAs.
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Figure 7: The calculated density of states of GaAs. The inset shows the tail
structure of the density of states of GaAs near the bottom of the conduction
bands.
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